Electrochemical studies on small electron transfer proteins using membrane electrodes,
dos Santos, M. M. C., de Sousa P. M. P., Goncalves M. L. S., Krippahl L., Moura J. J. G., Lojou E., and Bianco P.
, Journal of Electroanalytical Chemistry, Jan 16, Volume 541, p.153-162, (2003)
AbstractMembrane electrodes (ME) were constructed using gold, glassy carbon and pyrolytic graphite supports and a dialysis membrane, and used to study the electrochemical behavior of small size electron transfer proteins: monohemic cytochrome c(522) from Pseudomonas nautica and cytochrome c(533) as well as rubredoxin from Desulfovibrio vulgaris. Different electrochemical techniques were used including cyclic voltammetry (CV), square wave voltammetry (SW) and differential pulse voltammetry (DP). A direct electrochemical response was obtained in all cases except with rubredoxin where a facilitator was added to the protein solution entrapped between the membrane and the electrode surface. Formal potentials and heterogeneous charge transfer rate constants were determined from the voltammetric data. The influence of the ionic strength and the pH of the medium on the electrochemical response at the ME were analyzed. The benefits from the use of the ME in protein electrochemistry and its role in modulating the redox behavior are analyzed. A critical comparison is presented with data obtained at non-MEs. Finally, the interactions that must be established between the proteins and the electrode surfaces are discussed, thereby modeling molecular interactions that occur in biological systems. (C) 2002 Elsevier Science B.V. All rights reserved.
NMR solution structures of two mutants of desulforedoxin,
Goodfellow, B. J., Rusnak F., Moura I., Ascenso C. S., and Moura J. J.
, J Inorg Biochem, Jan 1, Volume 93, Number 1-2, p.100-8, (2003)
AbstractThe differences in geometry at the metal centres in the two known [Fe-4S] proteins rubredoxin (Rd) and desulforedoxin (Dx) are postulated to be a result of the different spacing of the C-terminal cysteine pair in the two proteins. In order to address this question, two mutants of Desulfovibrio gigas Dx with modified cysteinyl spacing were prepared and their solution structures have been determined by NMR. Mutant 1 of Dx (DxM1) has a single glycine inserted between the adjacent cysteines (C28 and C29) found in the wild type Dx sequence. Mutant 3 (DxM3) has two amino acid residues, -P-V-, inserted between C28 and C29 in order to mimic the primary sequence found in Rd from Desulfovibrio gigas. The solution structure of DxM1 exists, like wild type Dx, as a dimer in solution although the single glycine inserted between the adjacent cysteines disrupts the stability of the dimer resulting in exchange between a dimer state and a small population of another, probably monomeric, state. For DxM3 the two amino acid residues inserted between the adjacent cysteines results in a monomeric protein that has a global fold near the metal centre very similar to that found in Rd.
Ca2+ and the bacterial peroxidases: the cytochrome c peroxidase from Pseudomonas stutzeri,
Timoteo, C. G., Tavares P., Goodhew C. F., Duarte L. C., Jumel K., Girio F. M. F., Harding S., Pettigrew G. W., and Moura I.
, Journal of Biological Inorganic Chemistry, Jan, Volume 8, Number 1-2, p.29-37, (2003)
AbstractThe production of cytochrome c peroxidase (CCP) from Pseudomonas (Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome C-551 (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus (Pa.) denitrificans was proposed to have two different Ca2+ binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca2+. The affinity for Ca2+ in the mixed valence enzyme is so high that Ca2+ returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca2+ for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca2+ in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca2+ does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome C-551) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca2+ binding site of low affinity.
Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6),
Auchere, F., Raleiras P., Benson L., Venyaminov S. Y., Tavares P., Moura J. J., Moura I., and Rusnak F.
, Inorg Chem, Feb 24, Volume 42, Number 4, p.938-40, (2003)
AbstractSuperoxide reductases catalyze the monovalent reduction of superoxide anion to hydrogen peroxide. Spectroscopic evidence for the formation of a dinuclear cyano-bridged adduct after K(3)Fe(CN)(6) oxidation of the superoxide reductases neelaredoxin from Treponema pallidum and desulfoferrodoxin from Desulfovibrio vulgaris was reported. Oxidation with K(3)Fe(CN)(6) reveals a band in the near-IR with lambda(max) at 1020 nm, coupled with an increase of the iron content by almost 2-fold. Fourier transform infrared spectroscopy provided additional evidence with CN-stretching vibrations at 2095, 2025-2030, and 2047 cm(-)(1), assigned to a ferrocyanide adduct of the enzyme. Interestingly, the low-temperature electronic paramagnetic resonance (EPR) spectra of oxidized TpNlr reveal at least three different species indicating structural heterogeneity in the coordination environment of the active site Fe ion. Given the likely 6-coordinate geometry of the active site Fe(3+) ion in the ferrocyanide adduct, we propose that the rhombic EPR species can serve as a model of a hexacoordinate form of the active site.
Spectroscopic characterization of a novel 2 x 4Fe-4S ferredoxin isolated from Desulfovibrio desulfuricans ATCC 27774,
Rodrigues, P. M., Moura I., Macedo A. L., and Moura J. J. G.
, Inorganica Chimica Acta, Dec 3, Volume 356, p.215-221, (2003)
AbstractA novel iron-sulfur containing protein, a ferredoxin (Fd), was purified to homogeneity from the extract of Desulfovibrio desulfuricans American type culture collection (ATCC) 27774. The purified protein is a 13.4 kDa homodimer with a polypeptide chain of 60 amino acids residues, containing eight cysteines that coordinate two [4Fe-4S] clusters. The protein is shown to be air sensitive and cluster conversions take place. We structurally characterize a redox state that contains two [4Fe-4S] cores. 1D and 2D H-1 NMR studies are reported on form containing the clusters in the oxidized state. Based on the nuclear Overhauser effect (NOE), relaxation measurements and comparison of the present data with the available spectra of the analogous 8Fe Fds, the cluster ligands were specifically assigned to the eight-cysteinyl residues. (C) 2003 Elsevier B.V. All rights reserved.
Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase,
Ghosh, S., Gorelsky S. I., Chen P., Cabrito I., Moura J. J., Moura I., and Solomon E. I.
, J Am Chem Soc, Dec 24, Volume 125, Number 51, p.15708-9, (2003)
AbstractThe tetranuclear CuZ cluster catalyzes the two-electron reduction of N2O to N2 and H2O in the enzyme nitrous oxide reductase. This study shows that the fully reduced 4CuI form of the cluster correlates with the catalytic activity of the enzyme. This is the first demonstration that the S = 1/2 form of CuZ can be further reduced. Complementary DFT calculations support the experimental findings and demonstrate that N2O binding in a bent mu-1,3-bridging mode to the 4CuI form is most efficient due to strong back-bonding from two reduced copper atoms. This back-donation activates N2O for electrophilic attack by a proton.
Kinetic behavior of Desulfovibrio gigas aldehyde oxidoreductase encapsulated in reverse micelles,
Andrade, S. L., Brondino C. D., Kamenskaya E. O., Levashov A. V., and Moura J. J.
, Biochem Biophys Res Commun, Aug 15, Volume 308, Number 1, p.73-8, (2003)
AbstractWe report the kinetic behavior of the enzyme aldehyde oxidoreductase (AOR) from the sulfate reducing bacterium Desulfovibrio gigas (Dg) encapsulated in reverse micelles of sodium bis-(2-ethylhexyl) sulfosuccinate in isooctane using benzaldehyde, octaldehyde, and decylaldehyde as substrates. Dg AOR is a 200-kDa homodimeric protein that catalyzes the conversion of aldehydes to carboxylic acids. Ultrasedimentation analysis of Dg AOR-containing micelles showed the presence of 100-kDa molecular weight species, confirming that the Dg AOR subunits can be dissociated. UV-visible spectra of encapsulated Dg AOR are indistinguishable from the enzyme spectrum in solution, suggesting that both protein fold and metal cofactor are kept intact upon encapsulation. The catalytic constant (k(cat)) profile as a function of the micelle size W(0) (W(0)=[H(2)O]/[AOT]) using benzaldehyde as substrate showed two bell-shaped activity peaks at W(0)=20 and 26. Furthermore, enzymatic activity for octaldehyde and decylaldehyde was detected only in reverse micelles. Like for the benzaldehyde kinetics, two peaks with both similar k(cat) values and W(0) positions were obtained. EPR studies using spin-labeled reverse micelles indicated that octaldehyde and benzaldehyde are intercalated in the micelle membrane. This suggests that, though Dg AOR is found in the cytoplasm of bacterial cells, the enzyme may catalyze the reaction of substrates incorporated into a cell membrane.
Reductive activation of aerobically purified Desulfovibrio vulgaris hydrogenase: Mossbauer characterization of the catalytic H cluster,
Huynh, B. H., Tavares P., Pereira A. S., Moura I., and Moura J. J. G.
, Biochemistry and Physiology of Anaerobic Bacteria, 2003, p.35-45, (2003)
Abstractn/a
Crystallization and preliminary X-ray diffraction analysis of the di-haem cytochrome c peroxidase from Pseudomonas stutzeri,
Bonifácio, Cecília, Cunha Carlos A., Müller Axel, Timóteo Cristina G., Dias João M., Moura Isabel, and Romão Maria João
, Acta Crystallographica Section D, Volume 59, Number 2, p.345-347, (2003)
Abstractn/a