Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays,
Santos-Silva, T., Trincao J., Carvalho A. L., Bonifacio C., Auchere F., Moura I., Moura J. J., and Romao M. J.
, Acta Crystallogr Sect F Struct Biol Cryst Commun, Nov 1, Volume 61, Number Pt 11, p.967-70, (2005)
AbstractSuperoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His)4Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K3Fe(CN)6 belonged to space group P2(1) (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 A, beta = 106.9 degrees) and diffracted beyond 1.60 A resolution, while crystals grown in the presence of Na2IrCl6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 A, beta = 104.9 degrees) and diffracted beyond 1.55 A. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (lambda = 1.542 A) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2(1) data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.
Isolation and spectroscopic characterization of the membrane-bound nitrate reductase from Pseudomonas chlororaphis DSM 50135,
Pinho, D., Besson S., Silva P. J., de Castro B., and Moura I.
, Biochimica Et Biophysica Acta-General Subjects, May 25, Volume 1723, Number 1-3, p.151-162, (2005)
AbstractA nitrate reductase was solubilized with Triton X-100 from the membranes of Pseudomonas chlororaphis DSM 50135 grown microaerobically in the presence of nitrate. Like other membrane-bound nitrate reductases, it contains three subunits, of 129, 66 (64) and 24 kDa, referred to in the literature as alpha, beta and gamma, respectively. Electrocatalytic studies revealed that only the membrane-bound, not the solubilized form of the enzyme, can accept electrons from a menaquinone analog, menadione, whereas both forms can accept electrons from methylviologen. The isolated enzyme possesses several iron-sulfur clusters and a molybdopterin guanine dinucleotide active center. The iron-sulfur clusters can be grouped in two classes according to their redox properties, the high-potential and low-potential clusters. In the as-isolated enzyme, two forms of the molybdenum center, high- and low-pH, are detectable by electron paramagnetic resonance spectroscopy. The low-pH form shows a hyperfine splitting due to a proton, suggesting the presence of an -OHx ligand. Dithionite reduces the Mo(V) center to Mo(W) and subsequent reoxidization with nitrate originates a new Mo(V) signal, identical to the oxidized low-pH form but lacking its characteristic hyperfine splitting. The isolated preparation also contains heme c (in a sub-stoichiometric amount) with the ability to relay electrons to the molybdenum center, suggesting that this nitrate reductase may contain heme c instead of the heme b usually found in this class of enzymes. (c) 2005 Elsevier B.V. All rights reserved.
The methylenetetrahydrofolate reductase (MTHFR) 677C-->T mutation and cardiovascular risk--A case of ischemic stroke and acute myocardial infarction,
Melo, M., Gaspar E., Madeira S., de Moura P., Alexandrino B., and de Moura J. J.
, Rev Port Cardiol, Jan, Volume 24, Number 1, p.89-99, (2005)
AbstractThe authors report the case of a 39-year-old male patient who had an ischemic stroke (complete infarction of right anterior cerebral circulation) and an acute myocardial infarction during the same year. Molecular study revealed he was homozygous for the 677C-->T mutation in the gene coding for methylenetetrahydrofolate reductase, a key enzyme of folate metabolism; deficiency of this enzyme is associated with increased cardiovascular risk and neurological lesions. Some considerations are put forward about hyperhomocysteinemia and the MTHFR 677C-->T mutation as cardiovascular risk factors.
Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump,
Aureliano, M., Tiago T., Gandara R. M., Sousa A., Moderno A., Kaliva M., Salifoglou A., Duarte R. O., and Moura J. J.
, J Inorg Biochem, Dec, Volume 99, Number 12, p.2355-61, (2005)
AbstractAmong the biotargets interacting with vanadium is the calcium pump from the sarcoplasmic reticulum (SR). To this end, initial research efforts were launched with two vanadium(V)-citrate complexes, namely (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O and (NH(4))(6)[V(2)O(2)(O(2))(2)(C(6)H(4)O(7))(2)].4H(2)O, potentially capable of interacting with the SR calcium pump by combining kinetic studies with (51)V NMR spectroscopy. Upon dissolution in the reaction medium (concentration range: 4-0.5mM), both vanadium(V):citrate (VC) and peroxovanadium(V):citrate (PVC) complexes are partially converted into vanadate oligomers. A 1mM solution of the PVC complex, containing 184microM of the PVC complex, 94microM oxoperoxovanadium(V) (PV) species, 222microM monomeric (V1), 43microM dimeric (V2) and 53microM tetrameric (V4) species, inhibits Ca(2+) accumulation by 75 %, whereas a solution of the VC complex of the same vanadium concentration, containing 98microM of the VC complex, 263microM monomeric (V1), 64microM dimeric (V2) and 92microM tetrameric (V4) species inhibits the calcium pump activity by 33 %. In contrast, a 1 mM metavanadate solution, containing 460microM monomeric (V1), 90.2microM dimeric (V2) and 80microM tetrameric (V4) species, has no effect on Ca(2+) accumulation. The NMR signals from the VC complex (-548.0ppm), PVC complex (-551.5ppm) and PV (-611.1ppm) are broadened upon SR vesicle addition (2.5mg/ml total protein). The relative order for the half width line broadening of the NMR signals, which reflect the interaction with the protein, was found to be V4>PVC>VC>PV>V2=V1=1, with no effect observed for the V1 and V2 signals. Putting it all together the effects of two vanadium(V)-citrate complexes on the modulation of calcium accumulation and ATP hydrolysis by the SR calcium pump reflected the observed variable reactivity into the nature of key species forming upon dissolution of the title complexes in the reaction media.
Study of the spin-spin interactions between the metal centers of Desulfovibrio gigas aldehyde oxidoreductase: identification of the reducible sites of the [2Fe-2S]1+,2+ clusters,
More, C., Asso M., Roger G., Guigliarelli B., Caldeira J., Moura J., and Bertrand P.
, Biochemistry, Aug 30, Volume 44, Number 34, p.11628-35, (2005)
AbstractThe aldehyde oxidoreductase from Desulfovibrio gigas belongs to the family of molybdenum hydroxylases. Besides a molybdenum cofactor which constitutes their active site, these enzymes contain two [2Fe-2S](2+,1+) clusters which are believed to transfer the electrons provided by the substrate to an acceptor which is either a FAD group or an electron-transferring protein. When the three metal centers of D. gigas AOR are simultaneously paramagnetic, splittings due to intercenter spin-spin interactions are visible when the EPR spectra are recorded at low temperatures. By studying quantitatively these interactions with a model based on the X-ray crystal structure, which takes into consideration the interactions between the magnetic moments carried by all the metal sites of the system, it is possible to determine the location of the reducible sites of the [2Fe-2S] clusters. When combined with the electron-transfer pathways proposed on the basis of the X-ray crystal structure, the results provide a detailed description of the electron-transfer system of D. gigas AOR.
Synechocystis ferredoxin/ferredoxin-NADP(+)-reductase/NADP+ complex: Structural model obtained by NMR-restrained docking,
Palma, P. N., Lagoutte B., Krippahl L., Moura J. J., and Guerlesquin F.
, FEBS Lett, Aug 29, Volume 579, Number 21, p.4585-90, (2005)
AbstractFerredoxin (Fd) and ferredoxin-NADP(+)-reductase (FNR) are two terminal physiological partners of the photosynthetic electron transport chain. Based on a nuclear magnetic resonance (NMR)-restrained-docking approach, two alternative structural models of the Fd-FNR complex in the presence of NADP+ are proposed. The protein docking simulations were performed with the software BiGGER. NMR titration revealed a 1:1 stoichiometry for the complex and allowed the mapping of the interacting residues at the surface of Fd. The NMR chemical shifts were encoded into distance constraints and used with theoretically calculated electronic coupling between the redox cofactors to propose experimentally validated docked complexes.
Prediction of Signal Peptides and Signal Anchors of Cytocrome c Nitrite Reductase from Desulfovibrio desulfuricans ATCC 27774 Using Bioinformatic Tools,
Gonçalves, L. L., Almeida M. G., Lampreia J., Moura J. J. G., and Moura I.
, Essays in Bioinformatics, Volume Vol. 368, p.203-208, (2005)
Abstract
Purification and preliminary characterization of tetraheme cytochrome c3 and adenylylsulfate reductase from the peptidolytic sulfate-reducing bacterium Desulfovibrio aminophilus DSM 12254,
Lopez-Cortes, A., Bursakov S., Figueiredo A., Thapper A. E., Todorovic S., Moura J. J., Ollivier B., Moura I., and Fauque G.
, Bioinorg Chem Appl, p.81-91, (2005)
AbstractTwo proteins were purified and preliminarily characterized from the soluble extract of cells (310 g, wet weight) of the aminolytic and peptidolytic sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254. The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase, a key enzyme in the microbial dissimilatory sulfate reduction, has been purified in three chromatographic steps (DEAE-Biogel A, Source 15, and Superdex 200 columns). It contains two different subunits with molecular masses of 75 and 18 kDa. The fraction after the last purification step had a purity index (A(278nm) / A(388nm)) of 5.34, which was used for further EPR spectroscopic studies. The D. aminophilus APS reductase is very similar to the homologous enzymes isolated from D. gigas and D. desulfuricans ATCC 27774. A tetraheme cytochrome c(3) (His-heme iron-His) has been purified in three chromatographic steps (DEAE- Biogel A, Source 15, and Biogel-HTP columns) and preliminarily characterized. It has a purity index ([A(553nm) - A(570nm)](red) / A(280nm)) of 2.9 and a molecular mass of around 15 kDa, and its spectroscopic characterization (NMR and EPR) has been carried out. This hemoprotein presents similarities with the tetraheme cytochrome c(3) from Desulfomicrobium (Des.) norvegicum (NMR spectra, and N-terminal amino acid sequence).