Publications

Export 528 results:
Sort by: Author Title Type [ Year  (Desc)]
2000
Evidence for antisymmetric exchange in cuboidal 3Fe-4S (+) clusters, Sanakis, Y., Macedo A. L., Moura I., Moura J. J. G., Papaefthymiou V., and Munck E. , Journal of the American Chemical Society, Dec 6, Volume 122, Number 48, p.11855-11863, (2000) AbstractWebsite

Iron-sulfur clusters with [3Fe-4S] cores are widely distributed in biological systems. In the oxidized state, designated [3Fe-4S](+), these electron-transfer agents have an electronic ground state with S = 1/2, and; they exhibit EPR signals centered at g = 2.01. It has been established by Mossbauer spectroscopy that the three iron sites of the cluster are high-spin Fe3+; and the general properties of the S = 1/2 ground state have been described with the exchange Hamiltonian H-exch = J(12)S(1).S-2 + J(23)S(2).S-3 + J(13)S(1).S-3 Some [3Fe-4S](+) clusters (type 1) have their g-values confined to the range between g = 2.03 and 2.00 while others (type 2) exhibit a continuous distribution of g-values down to g approximate to 1.85. Despite considerable efforts in various laboratories no model has emerged that explains the g-values of type 2 clusters. The 4.2 K spectra of all [3Fe-4S](+) clusters have broad features,which have been simulated in the past by using Fe-57 magnetic hyperfine tensors with anisotropies that are unusually large for high-spin feme sites. It is proposed here that antisymmetric exchange, H-AS = d.(S-1 x S-2 + S-2 x S-3 + S-3 x S-1), is the cause of the g-value shifts in type 2 clusters. We have been able to fit the EPR and Mossbauer spectra of the 3Fe clusters of beef heart aconitase and Desulfovibrio gigas ferredoxin II by using antisymmetric exchange in combination with distributed exchange coupling constants J(12), J(13), and J(23) (J-strain). While antisymmetric exchange is negligible for aconitase (which has a type 1 cluster), fits of the ferredoxin II spectra require \d\ approximate to 0.4 cm(-1). Our studies show that the data of both proteins can lie fit using the same isotropic Fe-57 magnetic hyperfine coupling constant for th three cluster sites, namely a -18.0 MHz for aconitase and a = -18.5 MHz for the D. gigas ferredoxin. The effects of antisymmetric exchange and J-strain on the Mossbauer and EPR spectra are discussed.

Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur, Brown, K., Djinovic-Carugo K., Haltia T., Cabrito I., Saraste M., Moura J. J., Moura I., Tegoni M., and Cambillau C. , J Biol Chem, Dec 29, Volume 275, Number 52, p.41133-6, (2000) AbstractWebsite

Nitrous-oxide reductases (N2OR) catalyze the two-electron reduction of N(2)O to N(2). The crystal structure of N2ORs from Pseudomonas nautica (Pn) and Paracoccus denitrificans (Pd) were solved at resolutions of 2.4 and 1.6 A, respectively. The Pn N2OR structure revealed that the catalytic CuZ center belongs to a new type of metal cluster in which four copper ions are liganded by seven histidine residues. A bridging oxygen moiety and two other hydroxide ligands were proposed to complete the ligation scheme (Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J. G., Moura, I., and Cambillau, C. (2000) Nat. Struct. Biol. 7, 191-195). However, in the CuZ cluster, inorganic sulfur chemical determination and the high resolution structure of Pd N2OR identified a bridging inorganic sulfur instead of an oxygen. This result reconciles the novel CuZ cluster with the hitherto puzzling spectroscopic data.

Desulfoferrodoxin: a modular protein, Ascenso, C., Rusnak F., Cabrito I., Lima M. J., Naylor S., Moura I., and Moura J. J. , J Biol Inorg Chem, Dec, Volume 5, Number 6, p.720-9, (2000) AbstractWebsite

The gene encoding the non-heme iron-containing desulfoferrodoxin from Desulfovibrio vulgaris was cloned in two fragments in order to obtain polypeptides corresponding to the N- and C-terminal domains observed in the tertiary structure. These fragments were expressed in Escherichia coli, purified to homogeneity and biochemically and spectroscopically characterized. Both recombinant fragments behaved as independent metal-binding domains. The N-terminal fragment exhibited properties similar to desulforedoxin, as expected by the presence of a Fe(S-Cys)4 metal binding motif. The C-terminal fragment, which accommodates a Fe(Nepsilon-His)3(Ndelta-His)(S-Cys) center, was shown to have properties similar to neelaredoxin, except for the reaction with superoxide. The activities of desulfoferrodoxin and of the expressed C-terminal fragment were tested with superoxide in the presence and absence of cytochrome c. The results are consistent with superoxide reductase activity and a possible explanation for the low superoxide consumption in the superoxide dismutase activity assays is proposed.

Redox thermodynamics of low-potential iron-sulfur proteins, Battistuzzi, G., D'Onofrio M., Borsari M., Sola M., Macedo A. L., Moura J. J., and Rodrigues P. , J Biol Inorg Chem, Dec, Volume 5, Number 6, p.748-60, (2000) AbstractWebsite

The enthalpy and entropy changes associated with protein reduction (deltaHdegrees,(rc), deltaSdegrees,(rc)) were determined for a number of low-potential iron-sulfur proteins through variable temperature direct electrochemical experiments. These data add to previous estimates making available, overall, the reduction thermodynamics for twenty species from various sources containing all the different types of metal centers. These parameters are discussed with reference to structural data and calculated electrostatic metal-environment interaction energies, and redox properties of model complexes. This work, which is the first systematic investigation on the reduction thermodynamics of Fe-S proteins, contributes to the comprehension of the determinants of the differences in reduction potential among different protein families within a novel perspective. Moreover, comparison with analogous data obtained previously for electron transport (ET) metalloproteins with positive reduction potentials, i.e., cytochromes c, blue copper proteins, and HiPIPs, helps our understanding of the factors controlling the reduction potential in ET species containing different metal cofactors. The main results of this work can be summarized as follows.

A novel protein-bound copper - Molybdenum cluster, George, G. N., Pickering I. J., Yu E. Y., Prince R. C., Bursakov S. A., Gavel O. Y., Moura I., and Moura J. J. G. , Journal of the American Chemical Society, Aug 30, Volume 122, Number 34, p.8321-8322, (2000) AbstractWebsite
n/a
Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617, Prudencio, M., Pereira A. S., Tavares P., Besson S., Cabrito I., Brown K., Samyn B., Devreese B., Van Beeumen J., Rusnak F., Fauque G., Moura J. J., Tegoni M., Cambillau C., and Moura I. , Biochemistry, Apr 11, Volume 39, Number 14, p.3899-907, (2000) AbstractWebsite

The aerobic purification of Pseudomonas nautica 617 nitrous oxide reductase yielded two forms of the enzyme exhibiting different chromatographic behaviors. The protein contains six copper atoms per monomer, arranged in two centers named Cu(A) and Cu(Z). Cu(Z) could be neither oxidized nor further reduced under our experimental conditions, and exhibits a 4-line EPR spectrum (g(x)=2.015, A(x)=1.5 mT, g(y)=2.071, A(y)=2 mT, g(z)=2.138, A(z)=7 mT) and a strong absorption at approximately 640 nm. Cu(A) can be stabilized in a reduced EPR-silent state and in an oxidized state with a typical 7-line EPR spectrum (g(x)=g(y)= 2.021, A(x) = A(y)=0 mT, g(z) = 2.178, A(z)= 4 mT) and absorption bands at 480, 540, and approximately 800 nm. The difference between the two purified forms of nitrous oxide reductase is interpreted as a difference in the oxidation state of the Cu(A) center. In form A, Cu(A) is predominantly oxidized (S = (1)/(2), Cu(1.5+)-Cu(1.5+)), while in form B it is mostly in the one-electron reduced state (S = 0, Cu(1+)-Cu(1+)). In both forms, Cu(Z) remains reduced (S = 1/2). Complete crystallographic data at 2.4 A indicate that Cu(A) is a binuclear site (similar to the site found in cytochrome c oxidase) and Cu(Z) is a novel tetracopper cluster [Brown, K., et al. (2000) Nat. Struct. Biol. (in press)]. The complete amino acid sequence of the enzyme was determined and comparisons made with sequences of other nitrous oxide reductases, emphasizing the coordination of the centers. A 10.3 kDa peptide copurified with both forms of nitrous oxide reductase shows strong homology with proteins of the heat-shock GroES chaperonin family.

Aldehyde oxidoreductase activity in Desulfovibrio alaskensis NCIMB 13491 EPR assignment of the proximal [2Fe-2S] cluster to the Mo site, Andrade, S. L., Brondino C. D., Feio M. J., Moura I., and Moura J. J. , Eur J Biochem, Apr, Volume 267, Number 7, p.2054-61, (2000) AbstractWebsite

A novel molybdenum iron-sulfur-containing aldehyde oxidoreductase (AOR) belonging to the xanthine oxidase family was isolated and characterized from the sulfate-reducing bacterium Desulfovibrio alaskensis NCIMB 13491, a strain isolated from a soured oil reservoir in Purdu Bay, Alaska. D. alaskensis AOR is closely related to other AORs isolated from the Desulfovibrio genus. The protein is a 97-kDa homodimer, with 0.6 +/- 0.1 Mo, 3.6 +/- 0.1 Fe and 0.9 +/- 0.1 pterin cytosine dinucleotides per monomer. The enzyme catalyses the oxidation of aldehydes to their carboxylic acid form, following simple Michaelis-Menten kinetics, with the following parameters (for benzaldehyde): K(app/m)= 6.65 microM; V app = 13.12 microM.min(-1); k(app/cat) = 0.96 s(-1). Three different EPR signals were recorded upon long reduction of the protein with excess dithionite: an almost axial signal split by hyperfine interaction with one proton associated with Mo(V) species and two rhombic signals with EPR parameters and relaxation behavior typical of [2Fe-2S] clusters termed Fe/S I and Fe/S II, respectively. EPR results reveal the existence of magnetic interactions between Mo(V) and one of the Fe/S clusters, as well as between the two Fe/S clusters. Redox titration monitored by EPR yielded midpoint redox potentials of -275 and -325 mV for the Fe/S I and Fe/S II, respectively. The redox potential gap between the two clusters is large enough to obtain differentiated populations of these paramagnetic centers. This fact, together with the observed interactions among paramagnetic centers, was used to assign the EPR-distinguishable Fe/S I and Fe/S II to those seen in the reported crystal structures of homologous enzymes.

1999
A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization, Alves, T., Besson S., Duarte L. C., Pettigrew G. W., Girio F. M. F., Devreese B., Vandenberghe I., Van Beeumen J., Fauque G., and Moura I. , Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, Oct 12, Volume 1434, Number 2, p.248-259, (1999) AbstractWebsite

Cytochrome c peroxidase was expressed in cells of Pseudomonas nautica strain 617 grown under microaerophilic conditions. The 36.5 kDa dihaemic enzyme was purified to electrophoretic homogeneity in three chromatographic steps. N-terminal sequence comparison showed that the Ps. nautica enzyme exhibits a high similarity with the corresponding proteins from Paracoccus denitrificans and Pseudomonas aeruginosa. UV-visible spectra confirm calcium activation of the enzyme through spin state transition of the peroxidatic haem. Monohaemic cytochrome c(552) from Ps. nautica was identified as the physiological electron donor, with a half-saturating concentration of 122 mu M and allowing a maximal catalytic centre activity of 116 000 min(-1). Using this cytochrome the enzyme retained the same activity even at high ionic strength. There are indications that the interactions between the two redox partners are mainly hydrophobic in nature. (C) 1999 Elsevier Science B.V. All rights reserved.

Observation of ligand-based redox chemistry at the active site of a molybdenum enzyme, George, G. N., Costa C., Moura J. J. G., and Moura I. , Journal of the American Chemical Society, Mar 24, Volume 121, Number 11, p.2625-2626, (1999) AbstractWebsite
n/a
Cross-linking between cytochrome c3 and flavodoxin from Desulfovibrio gigas, Correia, C., Monzani E., Moura I., Lampreia J., and Moura J. J. , Biochem Biophys Res Commun, Mar 16, Volume 256, Number 2, p.367-71, (1999) AbstractWebsite

Tetraheme cytochrome c3 (13 kDa) and flavodoxin (16 kDa), are small electron transfer proteins that have been used to mimic, in vitro, part of the electron-transfer chain that operates between substract electron donors and respiratory electron acceptors partners in Desulfovibrio species (Palma, N., Moura, I., LeGall, J., Van Beeumen, J., Wampler, J., Moura, J. J. G. (1994) Biochemistry 33, 6394-6407). The electron transfer between these two proteins is believed to occur through the formation of a specific complex where electrostatic interaction is the main driving force (Stewart, D., LeGall, J., Moura, I., Moura, J.J.G., Peck, H.D., Xavier, A.V., Weiner, P.K. and Wampler, J.E. (1988) Biochemistry 27, 2444-2450, Stewart, D., LeGall, J., Moura, I., Moura, J.J.G., Peck, H.D., Xavier, A.V., Weiner, P., Wampler, J. (1989) Eur. J. Biochem. 185, 695-700). In order to obtain structural information of the pre-complex, a covalent complex between the two proteins was prepared. A water-soluble carbodiimide [EDC (1-ethyl-3(3 dimethylaminopropyl) carbodiimide hydrochloride] was used for the cross linking reaction. The reaction was optimized varying a wide number of experimental parameters such as ionic strength, protein and cross linker concentration, and utilization of different cross linkers and reaction time between the crosslinker and proteins.

Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli, Pereira, A. S., Tavares P., Krebs C., Huynh B. H., Rusnak F., Moura I., and Moura J. J. , Biochem Biophys Res Commun, Jun 24, Volume 260, Number 1, p.209-15, (1999) AbstractWebsite

Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfido-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mossbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data.

MAD structure of Pseudomonas nautica dimeric cytochrome c552 mimicks the c4 Dihemic cytochrome domain association, Brown, K., Nurizzo D., Besson S., Shepard W., Moura J., Moura I., Tegoni M., and Cambillau C. , J Mol Biol, Jun 18, Volume 289, Number 4, p.1017-28, (1999) AbstractWebsite

The monohemic cytochrome c552from Pseudomonas nautica (c552-Pn) is thought to be the electron donor to cytochrome cd1, the so-called nitrite reductase (NiR). It shows as high levels of activity and affinity for the P. nautica NiR (NiR-Pn), as the Pseudomonas aeruginosa enzyme (NiR-Pa). Since cytochrome c552is by far the most abundant electron carrier in the periplasm, it is probably involved in numerous other reactions. Its sequence is related to that of the c type cytochromes, but resembles that of the dihemic c4cytochromes even more closely. The three-dimensional structure of P. nautica cytochrome c552has been solved to 2.2 A resolution using the multiple wavelength anomalous dispersion (MAD) technique, taking advantage of the presence of the eight Fe heme ions in the asymmetric unit. Density modification procedures involving 4-fold non-crystallographic averaging yielded a model with an R -factor value of 17.8 % (Rfree=20.8 %). Cytochrome c552forms a tight dimer in the crystal, and the dimer interface area amounts to 19% of the total cytochrome surface area. Four tighly packed dimers form the eight molecules of the asymmetric unit. The c552dimer is superimposable on each domain of the monomeric cytochrome c4from Pseudomomas stutzeri (c4-Ps), a dihemic cytochrome, and on the dihemic c domain of flavocytochrome c of Chromatium vinosum (Fcd-Cv). The interacting residues which form the dimer are both similar in character and position, which is also true for the propionates. The dimer observed in the crystal also exists in solution. It has been hypothesised that the dihemic c4-Ps may have evolved via monohemic cytochrome c gene duplication followed by evolutionary divergence and the adjunction of a connecting linker. In this process, our dimeric c552structure might be said to constitute a "living fossile" occurring in the course of evolution between the formation of the dimer and the gene duplication and fusion. The availability of the structure of the cytochrome c552-Pn and that of NiR from P. aeruginosa made it possible to identify putative surface patches at which the docking of c552to NiR-Pn may occur.

Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein, Archer, M., Carvalho A. L., Teixeira S., Moura I., Moura J. J., Rusnak F., and Romao M. J. , Protein Sci, Jul, Volume 8, Number 7, p.1536-45, (1999) AbstractWebsite

Desulforedoxin (Dx), isolated from the sulfate reducing bacterium Desulfovibrio gigas, is a small homodimeric (2 x 36 amino acids) protein. Each subunit contains a high-spin iron atom tetrahedrally bound to four cysteinyl sulfur atoms, a metal center similar to that found in rubredoxin (Rd) type proteins. The simplicity of the active center in Dx and the possibility of replacing the iron by other metals make this protein an attractive case for the crystallographic analysis of metal-substituted derivatives. This study extends the relevance of Dx to the bioinorganic chemistry field and is important to obtain model compounds that can mimic the four sulfur coordination of metals in biology. Metal replacement experiments were carried out by reconstituting the apoprotein with In3+, Ga3+, Cd2+, Hg2+, and Ni2+ salts. The In3+ and Ga3+ derivatives are isomorphous with the iron native protein; whereas Cd2+, Hg2+, and Ni2+ substituted Dx crystallized under different experimental conditions, yielding two additional crystal morphologies; their structures were determined by the molecular replacement method. A comparison of the three-dimensional structures for all metal derivatives shows that the overall secondary and tertiary structures are maintained, while some differences in metal coordination geometry occur, namely, bond lengths and angles of the metal with the sulfur ligands. These data are discussed in terms of the entatic state theory.

Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods, Dias, J. M., Than M. E., Humm A., Huber R., Bourenkov G. P., Bartunik H. D., Bursakov S., Calvete J., Caldeira J., Carneiro C., Moura J. J., Moura I., and Romao M. J. , Structure, Jan 15, Volume 7, Number 1, p.65-79, (1999) AbstractWebsite

BACKGROUND: The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide (MGD) cofactor and one [4Fe-4S] cluster in a single polypeptide chain of 723 amino acid residues. To date, there is no crystal structure of a nitrate reductase. RESULTS: The first crystal structure of a dissimilatory (respiratory) nitrate reductase was determined at 1.9 A resolution by multiwavelength anomalous diffraction (MAD) methods. The structure is folded into four domains with an alpha/beta-type topology and all four domains are involved in cofactor binding. The [4Fe-4S] centre is located near the periphery of the molecule, whereas the MGD cofactor extends across the interior of the molecule interacting with residues from all four domains. The molybdenum atom is located at the bottom of a 15 A deep crevice, and is positioned 12 A from the [4Fe-4S] cluster. The structure of NAP reveals the details of the catalytic molybdenum site, which is coordinated to two MGD cofactors, Cys140, and a water/hydroxo ligand. A facile electron-transfer pathway through bonds connects the molybdenum and the [4Fe-4S] cluster. CONCLUSIONS: The polypeptide fold of NAP and the arrangement of the cofactors is related to that of Escherichia coli formate dehydrogenase (FDH) and distantly resembles dimethylsulphoxide reductase. The close structural homology of NAP and FDH shows how small changes in the vicinity of the molybdenum catalytic site are sufficient for the substrate specificity.

Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Almendra, M. J., Brondino C. D., Gavel O., Pereira A. S., Tavares P., Bursakov S., Duarte R., Caldeira J., Moura J. J., and Moura I. , Biochemistry, Dec 7, Volume 38, Number 49, p.16366-72, (1999) AbstractWebsite

An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein. Selenium was not detected. The UV/visible absorption spectrum of D. gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with (57)Fe and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.

The solution structure of a [3Fe-4S] ferredoxin: oxidised ferredoxin II from Desulfovibrio gigas, Goodfellow, B. J., Macedo A. L., Rodrigues P., Moura I., Wray V., and Moura J. J. , J Biol Inorg Chem, Aug, Volume 4, Number 4, p.421-30, (1999) AbstractWebsite

The use of standard 2D NMR experiments in combination with 1D NOE experiments allowed the assignment of 51 of the 58 spin systems of oxidised [3Fe4S] ferredoxin isolated from Desulfovibrio gigas. The NMR solution structure was determined using data from 1D NOE and 2D NOESY spectra, as distance constraints, and information from the X-ray structure for the spin systems not detected by NMR in torsion angle dynamics calculations to produce a family of 15 low target function structures. The quality of the NMR family, as judged by the backbone r.m.s.d. values, was good (0.80 A), with the majority of phi/psi angles falling within the allowed region of the Ramachandran plot. A comparison with the X-ray structure indicated that the overall global fold is very similar in solution and in the solid state. The determination of the solution structure of ferredoxin II (FdII) in the oxidised state (FdIIox) opens the way for the determination of the solution structure of the redox intermediate state of FdII (FdII(int)), for which no X-ray structure is available.

The structure of an electron transfer complex containing a cytochrome c and a peroxidase, Pettigrew, G. W., Prazeres S., Costa C., Palma N., Krippahl L., Moura I., and Moura J. J. , J Biol Chem, Apr 16, Volume 274, Number 16, p.11383-9, (1999) AbstractWebsite

Efficient biological electron transfer may require a fluid association of redox partners. Two noncrystallographic methods (a new molecular docking program and 1H NMR spectroscopy) have been used to study the electron transfer complex formed between the cytochrome c peroxidase (CCP) of Paracoccus denitrificans and cytochromes c. For the natural redox partner, cytochrome c550, the results are consistent with a complex in which the heme of a single cytochrome lies above the exposed electron-transferring heme of the peroxidase. In contrast, two molecules of the nonphysiological but kinetically competent horse cytochrome bind between the two hemes of the peroxidase. These dramatically different patterns are consistent with a redox active surface on the peroxidase that may accommodate more than one cytochrome and allow lateral mobility.

Crystallization and preliminary x-ray analysis of a nitrate reductase from Desulfovibrio desulfuricans ATCC 27774, Dias, J. M., Bursakov S., Carneiro C., Moura J. J., Moura I., and Romao M. J. , Acta Crystallogr D Biol Crystallogr, Apr, Volume 55, Number Pt 4, p.877-9, (1999) AbstractWebsite

Periplasmic nitrate reductase from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 contains two molybdopterin guanine dinucleotide cofactors and one [4Fe-4S] cluster as prosthetic groups and catalyzes the conversion of nitrate to nitrite. Crystals of the oxidized form of this enzyme were obtained using PEG as precipitant and belong to space group P3121 or P3221, with unit-cell dimensions a = b = 106.3, c = 135.1 A. There is one monomer of 80 kDa in the asymmetric unit, which corresponds to a Matthews ratio of 2.75 A3 Da-1. Using cryo-cooling procedures and X-rays from a rotating-anode generator, diffraction was observed to beyond 3.0 A resolution.

Enzymatic spectrophotometric determination of nitrites in beer, Girotti, S., Ferri E. N., Fini F., Ruffini F., Budini R., Moura I., Almeida G., Costa C., Moura J. J. G., and Carrea G. , Analytical Letters, 1999, Volume 32, Number 11, p.2217-2227, (1999) AbstractWebsite

A colorimetric assay for nitrite determination in beer based on c-type multiheme enzyme Nitrite reductase (NiR) isolated from Desulfovibrio desulfuricans ATCC 27774, was developed. Using the enzyme in solution, nitrite assay was linear in the 10(-8) - 10(-2) M range with a detection limit of 10(-8) M. and a recovery ranging from 90 to 107%. The imprecision ranged from 4 to 10% on the entire calibration curve. With NIR immobilised onto a nylon coil, a flow reactor was developed which showed a narrower linear range (10(-5) - 10(-2) M) and a higher detection limit (10(-5) M) than with the enzyme in solution, but made it possible to reuse the enzyme up to 100 times (50% residual activity). Sample preparation was simple and fast: only degassing and beer dilution by buffer was needed. This enzymatic assay was in good agreement with the results obtained using commercial nitrite determination kits.

Electrochemical studies on c-type cytochromes at microelectrodes, Correia dos Santos, M. M., Paes de Sousa P. M., Simões Gonçalves M. L., Lopes H., Moura I., and Moura J. J. G. , Journal of Electroanalytical Chemistry, Volume 464, Number 1, p.76-84, (1999) AbstractWebsite
n/a
Simple and Complex Iron-Sulfur Proteins in Sulfate Reducing Bacteria, Moura, Isabel, Pereira Alice S., Tavares Pedro, and Moura José J. G. , Advances in Inorganic Chemistry, Volume Volume 47, p.361-419, (1999) Abstract
n/a
1998
The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3, Ma, J. G., Zhang J., Franco R., Jia S. L., Moura I., Moura J. J., Kroneck P. M., and Shelnutt J. A. , Biochemistry, Sep 8, Volume 37, Number 36, p.12431-42, (1998) AbstractWebsite

Resonance Raman (RR) spectroscopy, molecular mechanics (MM) calculations, and normal-coordinate structural decomposition (NSD) have been used to investigate the conformational differences in the hemes in ferricytochromes c3. NSD analyses of heme structures obtained from X-ray crystallography and MM calculations of heme-peptide fragments of the cytochromes c3 indicate that the nonplanarity of the hemes is largely controlled by a fingerprint peptide segment consisting of two heme-linked cysteines, the amino acids between the cysteines, and the proximal histidine ligand. Additional interactions between the heme and the distal histidine ligand and between the heme propionates and the protein also influence the heme conformation, but to a lesser extent than the fingerprint peptide segment. In addition, factors that influence the folding pattern of the fingerprint peptide segment may have an effect on the heme conformation. Large heme structural differences between the baculatum cytochromes c3 and the other proteins are uncovered by the NSD procedure [Jentzen, W., Ma, J.-G., and Shelnutt, J. A. (1998) Biophys. J. 74, 753-763]. These heme differences are mainly associated with the deletion of two residues in the covalently linked segment of hemes 4 for the baculatum proteins. Furthermore, some of these structural differences are reflected in the RR spectra. For example, the frequencies of the structure-sensitive lines (nu4, nu3, and nu2) in the high-frequency region of the RR spectra are lower for the Desulfomicrobium baculatum cytochromes c3 (Norway 4 and 9974) than for the Desulfovibrio (D.) gigas, D. vulgaris, and D. desulfuricans strains, consistent with a more ruffled heme. Spectral decompositions of the nu3 and nu10 lines allow the assignment of the sublines to individual hemes and show that ruffling, not saddling, is the dominant factor influencing the frequencies of the structure-sensitive Raman lines. The distinctive spectra of the baculatum strains investigated are a consequence of hemes 2 and 4 being more ruffled than is typical of the other proteins.

Oxovanadium(IV) complexes of the dipeptides glycyl-L-aspartic acid, L-aspartylglycine and related ligands; a spectroscopic and potentiometric study, Pessoa, J. C., Gajda T., Gillard R. D., Kiss T., Luz S. M., Moura J. J. G., Tomaz I., Telo J. P., and Torok I. , Journal of the Chemical Society-Dalton Transactions, Nov 7, Number 21, p.3587-3600, (1998) AbstractWebsite

The equilibria in the systems VO2+ + L (L = Gly-L-Asp, L-Asp-Gly, N-acetyl-L-aspartic acid or succinic acid) have been studied at 25 degrees C and 0.2 mol dm(3) K(CI) medium by a combination of potentiometric and spectroscopic methods (ESR, circular dichroism and visible absorption). Formation constants were calculated from pH-metric data with total oxovanadium(Iv) concentrations of(0.6-4) x 10(-3) mol dm(-3) and ligand-to-metal (L:M) ratios of 2-8 (AspGly) or 4-15: 1 (other systems). The position of the Asp residue in the peptide chain affects the co-ordination mode of the ligands: while in the GlyAsp system bis complexes start to form at pH less than 2, for AspGly only 1 : 1 complexes form, with relatively high CD signal. The co-ordination behaviour of N-acetyl-L-aspartic and succinic acids is similar. The results of potentiometric and spectroscopic methods are self consistent. Isomeric structures are discussed for each stoichiometry proposed and the results compared with those for L-aspartic acid and dipeptides with non-coordinating side chains.

ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing cobalt and zinc, Gavel, O. Y., Bursakov S. A., Calvete J. J., George G. N., Moura J. J., and Moura I. , Biochemistry, Nov 17, Volume 37, Number 46, p.16225-32, (1998) AbstractWebsite

Adenosine triphosphate sulfurylase catalyzes the formation of adenosine 5'-phosphosulfate from adenosine triphosphate and sulfate. The enzyme plays a crucial role in sulfate activation, the key step for sulfate utilization, and has been purified from crude extracts of Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio gigas. Both proteins are homotrimers [141 kDa (3 x 47) for D. desulfuricans and 147 kDa (3 x 49) for D. gigas] and have been identified, for the first time, as metalloproteins containing cobalt and zinc. EXAFS reveals that either cobalt or zinc binds endogenously at presumably equivalent metal binding sites and is tetrahedrally coordinated to one nitrogen and three sulfur atoms. Furthermore, the electronic absorption spectra display charge-transfer bands at 335 and 370 nm consistent with sulfur coordination to cobalt, and as expected for a distorted tetrahedral cobalt geometry, d-d bands are observed at 625, 666, and 715 nm. This geometry is supported by the observation of high-spin Co2+ EPR signals at g approximately 6.5.

Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans, Tavares, P., Pereira A. S., Krebs C., Ravi N., Moura J. J., Moura I., and Huynh B. H. , Biochemistry, Mar 3, Volume 37, Number 9, p.2830-42, (1998) AbstractWebsite

Mossbauer and EPR spectroscopies were used to characterize the Fe clusters in an Fe-S protein isolated from Desulfovibrio desulfuricans (ATCC 27774). This protein was previously thought to contain hexanuclear Fe clusters, but a recent X-ray crystallographic measurement on a similar protein isolated from Desulfovibrio vulgaris showed that the protein contains two tetranuclear clusters, a cubane-type [4Fe-4S] cluster and a mixed-ligand cluster of novel structure [Lindley et al. (1997) Abstract, Chemistry of Metals in Biological Systems, European Research Conference, Tomar, Portugal]. Three protein samples poised at different redox potentials (as-purified, 40 and 320 mV) were investigated. In all three samples, the [4Fe-4S] cluster was found to be present in the diamagnetic 2+ oxidation state and exhibited typical Mossbauer spectra. The novel-structure cluster was found to be redox active. In the 320-mV and as-purified samples, the cluster is at a redox equilibrium between its fully oxidized and one-electron reduced states. In the 40-mV sample, the cluster is in a two-electron reduced state. Distinct spectral components associated with the four Fe sites of cluster 2 in the three oxidation states were identified. The spectroscopic parameters obtained for the Fe sites reflect different ligand environments, making it possible to assign the spectral components to individual Fe sites. In the fully oxidized state, all four iron ions are high-spin ferric and antiferromagnetically coupled to form a diamagnetic S = 0 state. In the one-electron and two-electron reduced states, the reducing electrons were found to localize, consecutively, onto two Fe sites that are rich in oxygen/nitrogen ligands. Based on the X-ray structure and the Mossbauer parameters, attempts could be made to identify the reduced Fe sites. For the two-electron reduced cluster, EPR and Mossbauer data indicate that the cluster is paramagnetic with a nonzero interger spin. For the one-electron reduced cluster, the data suggest a half-integer spin of 9/2. Characteristic fine and hyperfine parameters for all four Fe sites were obtained. Structural implications and the nature of the spin-coupling interactions are discussed.