Publications

Export 146 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus, Eidsness, M. K., Scott R. A., Prickril B. C., Dervartanian D. V., Legall J., Moura I., Moura J. J., and Peck, H. D. Jr. , Proc Natl Acad Sci U S A, Jan, Volume 86, Number 1, p.147-51, (1989) AbstractWebsite

Ni and Se x-ray absorption spectroscopic studies of the [NiFeSe]hydrogenases from Desulfovibrio baculatus are described. The Ni site geometry is pseudo-octahedral with a coordinating ligand composition of 3-4 (N,O) at 2.06 A, 1-2 (S,Cl) at 2.17 A, and 1 Se at 2.44 A. The Se coordination environment consists of 1 C at 2.0 A and a heavy scatterer M (M = Ni or Fe) at approximately 2.4 A. These results are interpreted in terms of a selenocysteine residue coordinated to the Ni site. The possible role of the Ni-Se site in the catalytic activation of H2 is discussed.

Evidence for the formation of a ZnFe3S4 cluster in Desulfovibrio gigas ferredoxin II, Surerus, Kristene K., Munck Eckard, Moura Isabel, Moura Jose J. G., and Legall Jean , Journal of the American Chemical Society, 1987/06/01, Volume 109, Number 12, p.3805-3807, (1987) AbstractWebsite
n/a
Ferredoxin from Methanosarcina barkeri: evidence for the presence of a three-iron center, Moura, I., Moura J. J., Huynh B. H., Santos H., Legall J., and Xavier A. V. , Eur J Biochem, Aug, Volume 126, Number 1, p.95-8, (1982) AbstractWebsite

Methanosarcina barkeri ferredoxin was purified and characterized by electron paramagnetic resonance (EPR) and Mossbauer spectroscopy. The purification procedure included chromatographic steps on DEAE-cellulose and gel filtration. The isolated protein is unstable under aerobic conditions. The ferredoxin exhibits charge transfer bands at 283 nm and 405 nm with an absorption ratio A405/A283 = 0.73. Its molecular weight has been estimated to be 20000-22000 by gel filtration chromatography. The native ferredoxin exhibits an intense EPR signal at g = 2.02 and only a very weak g = 1.94 signal develops upon reduction with dithionite. The Mossbauer spectra of the reduced protein are characteristic of a [3Fe-3S] center. The combined EPR and Mossbauer studies show that M. barkeri ferredoxin contains only [3Fe-3S] clusters, similar to Azotobacter vinelandii Fd[Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H. & Munck, M. (1980) J. Biol. Chem. 255, 1793-1796], Desulfovibrio gigas FdII [Huynh, B.H., Moura, J.J.G., Moura, I., Kent, T.A., LeGall, J., Xavier, A.V. & Munck, E. (1980) J. Biol. Chem. 255, 3242-3244] and mitochondrial beef heart aconitase [Kent, T.A., Dreyer, J.-L., Kennedy, M.C., Huynh, B.H., Emptage, M.H., Beinert, H. & Munck, E. (1982) Proc. Natl Acad. Sci. USA, 79, 1096-1100].

Ferromagnetic resonance of Fe(111) thin films and Fe(111)/Cu(111) multilayers, Rezende, S. M., Moura J. A., de Aguiar F. M., and Schreiner W. H. , Phys Rev B Condens Matter, Jun 1, Volume 49, Number 21, p.15105-15109, (1994) AbstractWebsite
n/a
The first crystal structure of class III superoxide reductase from Treponema pallidum, Santos-Silva, T., Trincao J., Carvalho A. L., Bonifacio C., Auchere F., Raleiras P., Moura I., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Jul, Volume 11, Number 5, p.548-58, (2006) AbstractWebsite

Superoxide reductase (SOR) is a metalloprotein containing a non-heme iron centre, responsible for the scavenging of superoxide radicals in the cell. The crystal structure of Treponema pallidum (Tp) SOR was determined using soft X-rays and synchrotron radiation. Crystals of the oxidized form were obtained using poly(ethylene glycol) and MgCl2 and diffracted beyond 1.55 A resolution. The overall architecture is very similar to that of other known SORs but TpSOR contains an N-terminal domain in which the desulforedoxin-type Fe centre, found in other SORs, is absent. This domain conserves the beta-barrel topology with an overall arrangement very similar to that of other SOR proteins where the centre is present. The absence of the iron ion and its ligands, however, causes a decrease in the cohesion of the domain and some disorder is observed, particularly in the region where the metal would be harboured. The C-terminal domain exhibits the characteristic immunoglobulin-like fold and harbours the Fe(His)4(Cys) active site. The five ligands of the iron centre are well conserved despite some disorder observed for one of the four molecules in the asymmetric unit. The participation of a glutamate as the sixth ligand of some of the iron centres in Pyrococcus furiosus SOR was not observed in TpSOR. A possible explanation is that either X-ray photoreduction occurred or there was a mixture of redox states at the start of data collection. In agreement with earlier proposals, details in the TpSOR structure also suggest that Lys49 might be involved in attraction of superoxide to the active site.

The fundamental importance of basic science: examples of high-impact discoveries from an international Chemistry Network, Lopes, L. G. F., Sadler P. J., Bernardes-Génisson V., Moura J. J. G., Chauvin R., Bernhardt P. V., and Sousa E. H. S. , Quim Nova, Volume 43, p.1176-1189, (2020)
Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by ZnCr-AQS LDH, Chen, H., Mousty C., Cosnier S., Silveira C., Moura J. J. G., and Almeida M. G. , Electrochemistry Communications, Sep, Volume 9, Number 9, p.2240-2245, (2007) AbstractWebsite

A biosensor for amperometric determination of nitrite was developed using cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans immobilized and electrically connected on a glassy carbon electrode by entrapment into redox active [ZnCr-AQS] layered double hydroxide containing anthraquinone-2-sulfonate (AQS). The transduction step corresponded to the electro-enzymatic reduction of nitrite by immobilized AQS molecules at -0.6 V. The biosensor showed a fast response to nitrite (5 s) with a linear range between 0.015 and 2.35 mu M, a sensitivity of 1.8 A M-1 cm(-2) and a detection limit of 4 nM. The apparent Michaelis-Menten constant (K-M(app)) M was 7.5 mu M. (c) 2007 Elsevier B.V. All rights reserved.

Human erythrocytes exposure to juglone leads to an increase of superoxide anion production associated with cytochrome b5 reductase uncoupling, Valério, G. N., Gutierrez-Merino C., Nogueira F., Moura I., Moura J. J. G., and Samhan-Arias A. K. , Biochim Biophys Acta Bioenerg, Volume EPub, (2020)
Hydrogen production and deuterium-proton exchange reactions catalyzed by Desulfovibrio nickel(II)-substituted rubredoxins, Saint-Martin, P., Lespinat P. A., Fauque G., Berlier Y., Legall J., Moura I., Teixeira M., Xavier A. V., and Moura J. J. , Proc Natl Acad Sci U S A, Dec, Volume 85, Number 24, p.9378-80, (1988) AbstractWebsite

The nickel tetrahedral sulfur-coordinated core formed upon metal replacement of the native iron in Desulfovibrio sp. rubredoxins is shown to mimic the reactivity pattern of nickel-containing hydrogenases with respect to hydrogen production, deuterium-proton exchange, and inhibition by carbon monoxide.

A hypothetical model of the flavodoxin-tetraheme cytochrome c3 complex of sulfate-reducing bacteria, Stewart, D. E., Legall J., Moura I., Moura J. J., Peck, H. D. Jr., Xavier A. V., Weiner P. K., and Wampler J. E. , Biochemistry, Apr 5, Volume 27, Number 7, p.2444-50, (1988) AbstractWebsite

A hypothetical model of the flavodoxin-tetraheme cytochrome c3 electron-transfer complex from the sulfate-reducing bacterium Desulfovibrio vulgaris has been constructed by using interactive computer graphics based on electrostatic potential field calculations and previous NMR experiments. Features of the proposed complex are (1) van der Waals contact between the flavin mononucleotide prosthetic group of flavodoxin and one heme of the cytochrome, (2) unique complementarity of electrostatic fields between the region surrounding this heme and the region surrounding the exposed portion of the flavin mononucleotide group of flavodoxin, and (3) no steric interferences between the two polypeptide chains in the complex. This complex is consistent with all structural and spectroscopic data available.

Imine Ligands Based on Ferrocene: Synthesis, Structural and Mössbauer Characterization and Evaluation as Chromogenic and Electrochemical Sensors for Hg+2, Rosa, V., Gaspari A., Folgosa F., Cordas C. M., Tavares P., Santos-Silva T., Barroso S., and Avilés T. , New J Chem, Volume 42, p.3334-3343, (2018) Website
An improved clean sonoreactor-based method for protein identification by mass spectrometry-based techniques, Santos, H. M., Mota Cristiano, Lodeiro C., Moura Isabel, Isaac Issa, and Capelo J. L. , Talanta, Dec 15, Volume 77, Number 2, p.870-875, (2008) AbstractWebsite

A new clean fast (8 min) method for in-solution protein digestion Without detergent or urea for protein identification by peptide mass fingerprint and mass spectrometry-based techniques is Proposed. The new method avoids the use of time consuming desalting procedures entailing the following four steps done under the effect of an ultrasonic field provided by a sonoreactor: denaturation (1 min) in a mixed Solution of water:acetonitrile 1/1 (v/v): protein reduction (1 min); protein alkylation (1 min); and protein digestion (5 min). Five Proteins with masses comprised between 14.4 kDa and 97 kDa and the protein splitsoret cytochrome c from D. desulfuricans ATCC27774, Were Successfully identified with this procedure. No differences were found in the sequence coverage or in the number of peptides matched when the new clean method was compared to another one using urea. Twofold better signal-to-noise ratios were obtained in the MALDI spectra from protein samples prepared with the new method when comparing it with a method using urea. The new digestion method avoids the need to remove salt content and increases throughput (six samples at once) while reducing sample loss and contamination from sample handling. (C) 2008 Elsevier B.V. All rights reserved.

Improving sample treatment for in-solution protein identification by peptide mass fingerprint using matrix-assisted laser desorption/ionization time-of-flight mass Spectrometry, Santos, H. M., Rial-Otero R., Fernandes L., Vale G., Rivas M. G., Moura I., and Capelo J. L. , Journal of Proteome Research, Sep, Volume 6, Number 9, p.3393-3399, (2007) AbstractWebsite

Three ultrasonic energy sources were studied to speed up the sample treatment for in-solution protein identification by peptide mass fingerprint using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein reduction, alkylation, and enzymatic digestion steps were done in 15 min. Nine proteins, including zinc resistance-associated protein precursor from Desulfovibrio desulfuricans strain G20 and split-soret cytochrome c from D. desulfuricans ATCC27774 were successfully identified with the new protocol.

Incorporation of molybdenum in rubredoxin: Models for mononuclear molybdenum enzymes, Maiti, B. K., Maia L. B., Silveira C., Todorovic S., Carreira C., Carepo M., Grazina R., Moura I., and Moura J. J. G. , J Biol Inorg Chem, Volume 20, p.821-829, (2015)
Insights into the electrochemical behaviour of composite materials: Monovacant polyoxometalates porous metal-organic framework, Paes de Sousa, P. M., Grazina R., Barbosa A. D. S., de Castro Baltazar, Moura J. J. G., Cunha-Silva L., and Salete S. , Electrochim Acta, Volume 87, p.853-859, (2013)
Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump, Aureliano, M., Tiago T., Gandara R. M., Sousa A., Moderno A., Kaliva M., Salifoglou A., Duarte R. O., and Moura J. J. , J Inorg Biochem, Dec, Volume 99, Number 12, p.2355-61, (2005) AbstractWebsite

Among the biotargets interacting with vanadium is the calcium pump from the sarcoplasmic reticulum (SR). To this end, initial research efforts were launched with two vanadium(V)-citrate complexes, namely (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O and (NH(4))(6)[V(2)O(2)(O(2))(2)(C(6)H(4)O(7))(2)].4H(2)O, potentially capable of interacting with the SR calcium pump by combining kinetic studies with (51)V NMR spectroscopy. Upon dissolution in the reaction medium (concentration range: 4-0.5mM), both vanadium(V):citrate (VC) and peroxovanadium(V):citrate (PVC) complexes are partially converted into vanadate oligomers. A 1mM solution of the PVC complex, containing 184microM of the PVC complex, 94microM oxoperoxovanadium(V) (PV) species, 222microM monomeric (V1), 43microM dimeric (V2) and 53microM tetrameric (V4) species, inhibits Ca(2+) accumulation by 75 %, whereas a solution of the VC complex of the same vanadium concentration, containing 98microM of the VC complex, 263microM monomeric (V1), 64microM dimeric (V2) and 92microM tetrameric (V4) species inhibits the calcium pump activity by 33 %. In contrast, a 1 mM metavanadate solution, containing 460microM monomeric (V1), 90.2microM dimeric (V2) and 80microM tetrameric (V4) species, has no effect on Ca(2+) accumulation. The NMR signals from the VC complex (-548.0ppm), PVC complex (-551.5ppm) and PV (-611.1ppm) are broadened upon SR vesicle addition (2.5mg/ml total protein). The relative order for the half width line broadening of the NMR signals, which reflect the interaction with the protein, was found to be V4>PVC>VC>PV>V2=V1=1, with no effect observed for the V1 and V2 signals. Putting it all together the effects of two vanadium(V)-citrate complexes on the modulation of calcium accumulation and ATP hydrolysis by the SR calcium pump reflected the observed variable reactivity into the nature of key species forming upon dissolution of the title complexes in the reaction media.

Iron compounds after erythrophagocytosis: chemical characterization and immunomodulatory effects, Costa, L. M., Moura E. M., Moura J. J., and de Sousa M. , Biochem Biophys Res Commun, Jun 9, Volume 247, Number 1, p.159-65, (1998) AbstractWebsite

In humans, the lymphomyeloid system has a fundamental role on iron metabolism promoting its recycling due to a continuous removal of effete red blood cells. Additionally, one of the most intriguing aspects of metalloporphyrins in biology is their effect on the immune system. However, the process of erythrocyte catabolism is still poorly understood and needs further research. In the present study, we attempt to investigate the nature and the possible physiologic role of Fe compounds released after erythrophagocytosis during the removal of red blood cells. Monocyte erythrophagocytosis in vitro experiments were done to characterize chemically the Fe compounds present inside the cells and in the culture supernatants. We tested the probable immunomodulatory functions of erythrophagocytosis products over lymphocyte cultures activated in vitro with T mitogens (alpha-CD3). Data obtained from atomic absorption spectroscopy confirmed the presence of Fe in the culture supernatants of monocyte cultures after erythrophagocytosis. Also, high-spin haem complexes derived from erythrocyte catabolism were detected by electron paramagnetic electronic resonance. Finally, in vitro activated lymphocyte proliferation experiments indicate the co-mitogenic properties of monocyte culture supernatants after red blood cells phagocytosis. Thus, the results of the present work provide evidence that culture monocyte supernatants after in vitro erythrophagocytosis contain Fe (III) high-spin haem complexes and show lymphocyte proliferation co-stimulatory properties.

Isolation and characterisation of a novel sulphate-reducing bacterium of the Desulfovibrio genus, Feio, M. J., Beech I. B., Carepo M., Lopes J. M., Cheung C. W., Franco R., Guezennec J., Smith J. R., Mitchell J. I., Moura J. J., and Lino A. R. , Anaerobe, Apr, Volume 4, Number 2, p.117-30, (1998) AbstractWebsite

A novel sulphate-reducing bacterium (Ind 1) was isolated from a biofilm removed from a severely corroded carbon steel structure in a marine environment. Light microscopy observations revealed that cells were Gram-negative, rod shaped and very motile. Partial 16S rRNA gene sequencing and analysis of the fatty acid profile demonstrated a strong similarity between the new species and members from the Desulfovibrio genus. This was confirmed by the results obtained following purification and characterisation of the key proteins involved in the sulphate-reduction pathway. Several metal-containing proteins, such as two periplasmic proteins: hydrogenase and cytochrome c3, and two cytoplasmic proteins: ferredoxin and sulphite reductase, were isolated and purified. The latter proved to be of the desulfoviridin type which is typical of the Desulfovibrio genus. The study of the remaining proteins revealed a high degree of similarity with the homologous proteins isolated from Desulfovibrio gigas. However, the position of the strain within the phylogenetic tree clearly indicates that the bacterium is closely related to Desulfovibrio gabonensis, and these three strains form a separate cluster in the delta subdivision of the Proteobacteria. On the basis of the results obtained, it is suggested that Ind 1 belongs to a new species of the genus Desulfovibrio, and the name Desulfovibrio indonensis is proposed.

Isolation and characterisation of metallothionein from the clam Ruditapes decussatus, Simes, D. C., Bebianno M. J., and Moura J. J. , Aquat Toxicol, May 8, Volume 63, Number 3, p.307-18, (2003) AbstractWebsite

Metallothioneins (MT) were obtained after purification from metal-exposed clams (Ruditapes decussatus) using gel-permeation and ion-exchange chromatography. Four cadmium-metallothioneins (CdMTs) were resolved by ion-exchange chromatography and they all had similar molecular weights, high cadmium content and an absorption spectra indicative of the presence of characteristic Cd-S aggregates. The NH(2)-terminal sequence suggests the presence of at least two class I clam MT isoforms. For the other two putative clam CdMTs isolated, the results of the amino acid determination were inconclusive. One was slightly contaminated and the other one had a blocked NH(2)-terminal. These clam metalothioneins contain glycine, which seems to be a common feature of molluscan MT family and exhibited more similarity to oysters than to mussels. Further investigation on the inducibility of these isoforms will be necessary if clams are to be used as biomarkers of metal exposure.

Isolation and spectroscopic characterization of the membrane-bound nitrate reductase from Pseudomonas chlororaphis DSM 50135, Pinho, D., Besson S., Silva P. J., de Castro B., and Moura I. , Biochimica Et Biophysica Acta-General Subjects, May 25, Volume 1723, Number 1-3, p.151-162, (2005) AbstractWebsite

A nitrate reductase was solubilized with Triton X-100 from the membranes of Pseudomonas chlororaphis DSM 50135 grown microaerobically in the presence of nitrate. Like other membrane-bound nitrate reductases, it contains three subunits, of 129, 66 (64) and 24 kDa, referred to in the literature as alpha, beta and gamma, respectively. Electrocatalytic studies revealed that only the membrane-bound, not the solubilized form of the enzyme, can accept electrons from a menaquinone analog, menadione, whereas both forms can accept electrons from methylviologen. The isolated enzyme possesses several iron-sulfur clusters and a molybdopterin guanine dinucleotide active center. The iron-sulfur clusters can be grouped in two classes according to their redox properties, the high-potential and low-potential clusters. In the as-isolated enzyme, two forms of the molybdenum center, high- and low-pH, are detectable by electron paramagnetic resonance spectroscopy. The low-pH form shows a hyperfine splitting due to a proton, suggesting the presence of an -OHx ligand. Dithionite reduces the Mo(V) center to Mo(W) and subsequent reoxidization with nitrate originates a new Mo(V) signal, identical to the oxidized low-pH form but lacking its characteristic hyperfine splitting. The isolated preparation also contains heme c (in a sub-stoichiometric amount) with the ability to relay electrons to the molybdenum center, suggesting that this nitrate reductase may contain heme c instead of the heme b usually found in this class of enzymes. (c) 2005 Elsevier B.V. All rights reserved.

Isolation of P590 from Methanosarcina barkeri: evidence for the presence of sulfite reductase activity, Moura, J. J., Moura I., Santos H., Xavier A. V., Scandellari M., and Legall J. , Biochem Biophys Res Commun, Oct 15, Volume 108, Number 3, p.1002-9, (1982) AbstractWebsite
n/a
Kinetic and structural studies of aldehyde oxidoreductase from Desulfovibrio gigas reveal a dithiolene-based chemistry for enzyme activation and inhibition by H2O2, Marangon, J., Correia H. D., Brondino C. D., Moura J. J. G., Romao M. J., Gonzalez P. J., and Santos-Silva T. , PLoS One, Volume 8, p.e83234, (2013)
Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a sulfido ligand for catalysis and give evidence for a direct Mo-C interaction in a biological system, Santos-Silva, T., Ferroni F., Thapper A., Marangon J., Gonzalez P. J., Rizzi A. C., Moura I., Moura J. J., Romao M. J., and Brondino C. D. , J Am Chem Soc, Jun 17, Volume 131, Number 23, p.7990-8, (2009) AbstractWebsite

Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a member of the xanthine oxidase (XO) family of mononuclear Mo-enzymes that catalyzes the oxidation of aldehydes to carboxylic acids. The molybdenum site in the enzymes of the XO family shows a distorted square pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. We report here steady-state kinetic studies of DgAOR with the inhibitors cyanide, ethylene glycol, glycerol, and arsenite, together with crystallographic and EPR studies of the enzyme after reaction with the two alcohols. In contrast to what has been observed in other members of the XO family, cyanide, ethylene glycol, and glycerol are reversible inhibitors of DgAOR. Kinetic data with both cyanide and samples prepared from single crystals confirm that DgAOR does not need a sulfido ligand for catalysis and confirm the absence of this ligand in the coordination sphere of the molybdenum atom in the active enzyme. Addition of ethylene glycol and glycerol to dithionite-reduced DgAOR yields rhombic Mo(V) EPR signals, suggesting that the nearly square pyramidal coordination of the active enzyme is distorted upon alcohol inhibition. This is in agreement with the X-ray structure of the ethylene glycol and glycerol-inhibited enzyme, where the catalytically labile OH/OH(2) ligand is lost and both alcohols coordinate the Mo site in a eta(2) fashion. The two adducts present a direct interaction between the molybdenum and one of the carbon atoms of the alcohol moiety, which constitutes the first structural evidence for such a bond in a biological system.

Ligand accessibility to heme cytochrome b5 coordinating sphere and enzymatic activity enhancement upon tyrosine ionization, Samhan-Arias, A. K., Cordas C. M., Carepo M. S., Maia L. B., Gutierrez-Merino C., Moura I., and Moura J. J. G. , J Biol Inorg Chem, Volume 24, p.317-330, (2019)
Ligand K-edge X-ray absorption spectroscopy and DFT calculations on [Fe3S4]0,+ clusters: delocalization, redox, and effect of the protein environment, Dey, A., Glaser T., Moura J. J., Holm R. H., Hedman B., Hodgson K. O., and Solomon E. I. , J Am Chem Soc, Dec 29, Volume 126, Number 51, p.16868-78, (2004) AbstractWebsite

Ligand K-edge XAS of an [Fe3S4]0 model complex is reported. The pre-edge can be resolved into contributions from the mu(2)S(sulfide), mu(3)S(sulfide), and S(thiolate) ligands. The average ligand-metal bond covalencies obtained from these pre-edges are further distributed between Fe(3+) and Fe(2.5+) components using DFT calculations. The bridging ligand covalency in the [Fe2S2]+ subsite of the [Fe3S4]0 cluster is found to be significantly lower than its value in a reduced [Fe2S2] cluster (38% vs 61%, respectively). This lowered bridging ligand covalency reduces the superexchange coupling parameter J relative to its value in a reduced [Fe2S2]+ site (-146 cm(-1) vs -360 cm(-1), respectively). This decrease in J, along with estimates of the double exchange parameter B and vibronic coupling parameter lambda2/k(-), leads to an S = 2 delocalized ground state in the [Fe3S4]0 cluster. The S K-edge XAS of the protein ferredoxin II (Fd II) from the D. gigas active site shows a decrease in covalency compared to the model complex, in the same oxidation state, which correlates with the number of H-bonding interactions to specific sulfur ligands present in the active site. The changes in ligand-metal bond covalencies upon redox compared with DFT calculations indicate that the redox reaction involves a two-electron change (one-electron ionization plus a spin change of a second electron) with significant electronic relaxation. The presence of the redox inactive Fe(3+) center is found to decrease the barrier of the redox process in the [Fe3S4] cluster due to its strong antiferromagnetic coupling with the redox active Fe2S2 subsite.