Publications

Export 207 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Pessoa, JC, Garribba E, Santos MFA, Santos-Silva T.  2015.  Vanadium and proteins: Uptake, transport, structure, activity and function, 2015/10/15/. The Ninth International Symposium on the Chemistry and Biological Chemistry of Vanadium. 301–302:49-86. AbstractWebsite

AbstractVanadium is an element ubiquitously present in our planet's crust and thus there are several organisms that use vanadium for activity or function of proteins. Examples are the vanadium-dependent haloperoxidases and the vanadium-containing nitrogenases. Some organisms that use vanadium have extremely efficient and selective protein-dependent systems for uptake and transport of vanadium and are able to accumulate high levels of vanadium from seawater, vanabins being a unique family of vanadium binding proteins found in ascidians involved in this process. For all of the systems a discussion regarding the role of the V-containing proteins is provided, mostly centered on structural aspects of the vanadium site and, when possible or relevant, relating this to the mechanisms operating. Phosphate is very important in biological systems and is involved in an extensive number of biological recognition and bio-catalytic systems. Vanadate(V) is able to inhibit many of the enzymes involved in these processes, such as ATPases, phosphatases, ribonucleases, phosphodiesterases, phosphoglucomutase and glucose-6-phosphatase, and it appears clear that this is closely related to the analogous physicochemical properties of vanadate and phosphate. The ability of vanadium to interfere with the metabolic processes involving Ca2+ and Mg2+, connected with its versatility to undergo changes in coordination geometry, allow V to influence the function of a large variety of phosphate-metabolizing enzymes and vanadate(V) salts and compounds have been frequently used either as inhibitors of these enzymes, or as probes to study the mechanisms of their reactions and catalytic cycle. In this review we give an overview of the many examples so far reported, also disclosing that vanadate(IV) may also have an equally efficient inhibiting effect. The prospective application of vanadium compounds as therapeutics has also been an important topic of research. How vanadium may be transported in blood and up-taken by cells are particularly relevant issues, this being mainly dependent on transferrin (and albumin) present in blood plasma. The thousands of studies reported on the effects of vanadium compounds reflect the complexity of the interactions occurring. Although it is not easy to anticipate/determine if a particular effect observed in a test tube or in vitro is also going to take place in vivo, it is clear that vanadium ions may interfere with many metabolic processes at many distinct levels. Emphasis is given on structural and functional aspects of vanadium–protein interactions relevant for vanadium binding and/or for clarification of role of the metal center in the reaction mechanisms. The additional knowledge that the presence of vanadium can change the action of a protein, other than simply inhibiting it, may also be important to understand how vanadium affects biological systems. This possibility, together with the vanadate–phosphate analogy further potentiates the belief that vanadium probably has relevant functions in living beings, which may involve interaction or incorporation of the metal ion and/or its compounds with several proteins.

Santos, MFA, Correia I, Oliveira AR, Garribba E, Pessoa JC, Santos-Silva T.  2014.  Vanadium Complexes as Prospective Therapeutics: Structural Characterization of a VIV Lysozyme Adduct. European Journal of Inorganic Chemistry. :n/a–n/a.: WILEY-VCH Verlag AbstractWebsite

The biological activity of vanadium complexes, namely, as insulin enhancers, is well known. We report a combined X-ray crystallography, electron paramagnetic resonance, and density functional theory study of the interaction of vanadium picolinate complexes with hen egg white lysozyme (HEWL). We show that the VIVO(pic)2 complex covalently binds to the COO– group of the side chain of Asp52 of HEWL. The long VIV=O bond obtained in the X-ray study is explained to be due to reduction of VIV to VIII during exposure of the crystals to the intense X-ray beam.

Santos, MFA, Oliveira AR, Somnath R, Romao MJ, Pessoa JC, Santos-Silva T.  2013.  Vanadium compounds as prospective therapeutics: X-ray structure of protein adducts. European Biophysics Journal with Biophysics Letters. 42:S181-S181. AbstractWebsite
n/a
Boer, DR, Thapper A, Brondino CD, Romao MJ, Moura JJG.  2004.  X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibrio gigas aldehyde dehydrogenase: A member of the xanthine oxidase family. Journal of the American Chemical Society. 126:8614-8615., Number 28 AbstractWebsite
n/a
Najmudin, S, Guerreiro C, Carvalho AL, Prates JAM, Correia MAS, Alves VD, Ferreira LMA, Romao MJ, Gilbert HJ, Bolam DN, Fontes C.  2006.  Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. Journal of Biological Chemistry. 281:8815-8828., Number 13 AbstractWebsite
n/a
Carvalho, AL, Santos-Silva T, Romão MJ, Eurico J, Marcelo F.  2018.  {CHAPTER 2 Structural Elucidation of Macromolecules}, sep. Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications with the Protocols. :30–91.: BENTHAM SCIENCE PUBLISHERS AbstractWebsite
n/a
Correia, MAS, Otrelo-Cardoso AR, Schwuchow V, {Sigfridsson Clauss} KGV, Haumann M, Romão MJ, Leimkühler S, Santos-Silva T.  2016.  {The Escherichia coli Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes}, oct. ACS Chemical Biology. 11:2923–2935., Number 10 AbstractWebsite

The xanthine oxidase (XO) family comprises molybdenum-dependent enzymes that usually form homodimers (or dimers of heterodimers/trimers) organized in three domains that harbor two [2Fe-2S] clusters, one FAD, and a Mo cofactor. In this work, we crystallized an unusual member of the family, the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli. This is the first example of an E. coli protein containing a molybdopterin-cytosine-dinucleotide cofactor and is the only heterotrimer of the XO family so far structurally characterized. The crystal structure revealed the presence of an unexpected [4Fe-4S] cluster, anchored to an additional 40 residues subdomain. According to phylogenetic analysis, proteins containing this cluster are widely spread in many bacteria phyla, putatively through repeated gene transfer events. The active site of PaoABC is highly exposed to the surface with no aromatic residues and an arginine (PaoC-R440) making a direct interaction with PaoC-E692, which acts as a base catalyst. In order to understand the importance of R440, kinetic assays were carried out, and the crystal structure of the PaoC-R440H variant was also determined.