Publications

Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
Caseiro, C, McGregor NGS, Alves VD, Carvalho AL, Romão MJ, Davies GJ, Fontes CMGA, Bule P.  2024.  Family GH157 enzyme exhibits broad linkage tolerance and a dual endo/exo- β -glucanase activity on β-glucans, 2024. :137402. AbstractWebsite

The structural and chemical diversity of β-glucans is reflected on the variety of essential biological roles tackled by these polysaccharides. This natural heterogeneity requires an elaborate assortment of enzymatic mechanisms to assemble, degrade or modify, as well as to extract their full biotechnological potential. Recent metagenomic efforts have provided an unprecedented growth in potential new biocatalysts, most of which remain unconfirmed or uncharacterized. Here we report the first biochemical and structural characterization of two bacterial β-glucanases from the recently created glycoside hydrolase family 157 (LaGH157 and BcGH157) and investigate their molecular basis for substrate hydrolysis. Structural analysis by X-ray crystallography revealed that GH157 enzymes belong to clan GH-A, possessing a (β/α)8-barrel fold catalytic domain, two β-sandwich accessory domains and two conserved catalytic glutamates residues, with relative positions compatible with a retaining mechanism of hydrolysis. Specificity screening and enzyme kinetics suggest that the enzymes prefer mixed-linkage glucans over β-1,3-glucans. Activity screening showed that both enzymes exhibit pH optimum at 6.5 and temperature optimum for LaGH157 and BcGH157 at 25 °C and 48 °C, respectively. Product analysis with HPAEC-PAD and LC-MS revealed that both enzymes are endo-1,3(4)-β-glucanases, capable of cleaving β-1,3 and β-1,4-linked glucoses, when preceded by a β-1,3 linkage. Moreover, BcGH157 needs a minimum of 4 subsites occupied for hydrolysis to occur, while LaGH157 only requires 3 subsites. Additionally, LaGH157 possesses exohydrolytic activity on β-1,3 and branching β-1,6 linkages. This unusual bifunctional endo-1,3(4)/exo-1,3–1,6 activity constitutes an expansion on our understanding of β-glucan deconstruction, with the potential to inspire future applications.

2020
Vidossich, P, Castañeda Moreno LE, Mota C, de Sanctis D, Miscione GP, De Vivo M.  2020.  Functional Implications of Second-Shell Basic Residues for dUTPase DR2231 Enzymatic Specificity, 2020. ACS CatalysisACS Catalysis. 10(23):13825-13833.: American Chemical Society AbstractWebsite

Nucleotide-processing enzymes are key players in biological processes. They often operate through high substrate specificity for catalysis. How such specificity is achieved is unclear. Here, we dealt with this question by investigating all-α dimeric deoxyuridine triphosphate nucleotidohydrolases (dUTPases). Typically, these dUTPases hydrolyze either dUTP or deoxyuridine diphosphate (dUDP) substrates. However, the dUTPase enzyme DR2231 from Deinococcus radiodurans selectively hydrolyzes dUTP only, and not dUDP. By means of extended classical molecular dynamics simulations and quantum chemical calculations, we show that DR2231 achieves this specificity for dUTP via second-shell basic residues that, together with the two catalytic magnesium ions, contribute to properly orienting the γ-phosphate of dUTP in a prereactive state. This allows a nucleophilic water to be correctly placed and activated in order to perform substrate hydrolysis. We show that this enzymatic mechanism is not viable when dUDP is bound to DR2231. Importantly, in several other dUTPases capable of hydrolyzing either dUTP or dUDP, we detected that active site second-shell basic residues are more in number, anchoring the β-phosphate of the nucleotide substrate too, in contrast to what is observed in DR2231. Thus, strategically located basic second-shell residues mediate precise reactant positioning at the catalytic site, determining substrate specificity in dUTPases and possibly in other structurally similar nucleotide-processing metalloenzymes.Nucleotide-processing enzymes are key players in biological processes. They often operate through high substrate specificity for catalysis. How such specificity is achieved is unclear. Here, we dealt with this question by investigating all-α dimeric deoxyuridine triphosphate nucleotidohydrolases (dUTPases). Typically, these dUTPases hydrolyze either dUTP or deoxyuridine diphosphate (dUDP) substrates. However, the dUTPase enzyme DR2231 from Deinococcus radiodurans selectively hydrolyzes dUTP only, and not dUDP. By means of extended classical molecular dynamics simulations and quantum chemical calculations, we show that DR2231 achieves this specificity for dUTP via second-shell basic residues that, together with the two catalytic magnesium ions, contribute to properly orienting the γ-phosphate of dUTP in a prereactive state. This allows a nucleophilic water to be correctly placed and activated in order to perform substrate hydrolysis. We show that this enzymatic mechanism is not viable when dUDP is bound to DR2231. Importantly, in several other dUTPases capable of hydrolyzing either dUTP or dUDP, we detected that active site second-shell basic residues are more in number, anchoring the β-phosphate of the nucleotide substrate too, in contrast to what is observed in DR2231. Thus, strategically located basic second-shell residues mediate precise reactant positioning at the catalytic site, determining substrate specificity in dUTPases and possibly in other structurally similar nucleotide-processing metalloenzymes.

2018
Leisico, F, V. Vieira D, Figueiredo TA, Silva M, Cabrita EJ, Sobral RG, Ludovice AM, Trincão J, Romão MJ, de Lencastre H, Santos-Silva T.  2018.  First insights of peptidoglycan amidation in Gram-positive bacteria - the high-resolution crystal structure of Staphylococcus aureus glutamine amidotransferase GatD, 2018. Scientific Reports. 8(1):5313. AbstractWebsite

Gram-positive bacteria homeostasis and antibiotic resistance mechanisms are dependent on the intricate architecture of the cell wall, where amidated peptidoglycan plays an important role. The amidation reaction is carried out by the bi-enzymatic complex MurT-GatD, for which biochemical and structural information is very scarce. In this work, we report the first crystal structure of the glutamine amidotransferase member of this complex, GatD from Staphylococcus aureus, at 1.85 Å resolution. A glutamine molecule is found close to the active site funnel, hydrogen-bonded to the conserved R128. In vitro functional studies using 1H-NMR spectroscopy showed that S. aureus MurT-GatD complex has glutaminase activity even in the absence of lipid II, the MurT substrate. In addition, we produced R128A, C94A and H189A mutants, which were totally inactive for glutamine deamidation, revealing their essential role in substrate sequestration and catalytic reaction. GatD from S. aureus and other pathogenic bacteria share high identity to enzymes involved in cobalamin biosynthesis, which can be grouped in a new sub-family of glutamine amidotransferases. Given the ubiquitous presence of GatD, these results provide significant insights into the molecular basis of the so far undisclosed amidation mechanism, contributing to the development of alternative therapeutics to fight infections.

2012
Coelho, C, Mahro M, Trincao J, Carvalho ATP, Ramos MJ, Terao M, Garattini E, Leimkuehler S, Romao MJ.  2012.  The First Mammalian Aldehyde Oxidase Crystal Structure INSIGHTS INTO SUBSTRATE SPECIFICITY. Journal of Biological Chemistry. 287:40690-40702., Number 48 AbstractWebsite
n/a
2010
Ribeiro, T, Santos-Silva T, Alves VD, Dias FMV, Luis AS, Prates JAM, Ferreira LMA, Romao MJ, Fontes CMGA.  2010.  Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities. Biochimica Et Biophysica Acta-Proteins and Proteomics. 1804:2054-2062., Number 10 AbstractWebsite
n/a
2006
Santos-Silva, T, Trincao J, Carvalho AL, Bonifacio C, Auchere F, Raleiras P, Moura I, Moura JJG, Romao MJ.  2006.  The first crystal structure of class III superoxide reductase from Treponema pallidum. Journal of Biological Inorganic Chemistry. 11:548-558., Number 5 AbstractWebsite
n/a
Raaijmakers, HCA, Romao MJ.  2006.  Formate-reduced E-coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism. Journal of Biological Inorganic Chemistry. 11:849-854., Number 7 AbstractWebsite
n/a
2004
Carvalho, AL, Goyal A, Prates JAM, Bolam DN, Gilbert HJ, Pires VMR, Ferreira LMA, Planas A, Romao MJ, Fontes C.  2004.  The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. Journal of Biological Chemistry. 279:34785-34793., Number 33 AbstractWebsite
n/a
loading