Publications

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
Mota, C, Webster M, Saidi M, Kapp U, Zubieta C, Giachin G, Manso JA, de Sanctis D.  2024.  Metal ion activation and DNA recognition by the Deinococcus radiodurans manganese sensor DR2539. bioRxiv. : Cold Spring Harbor Laboratory AbstractWebsite

The accumulation of manganese ions is crucial for scavenging reactive oxygen species (ROS) and protecting the proteome of Deinococcus radiodurans (Dr). However, metal homeostasis still needs to be tightly regulated to avoid toxicity. DR2539, a dimeric transcription regulator, plays a key role in Dr manganese homeostasis. Despite comprising three well-conserved domains: a DNA binding domain, a dimerization domain, and an ancillary domain, both the metal ion activation mechanism and the DNA recognition mechanism remain elusive. In this study, we present biophysical analyses and the structure of the dimerization and DNA binding domains of DR2539 in its holo form and in complex with the 21 bp pseudo-palindromic repeat of the dr1709 promotor region. These findings shed light into the activation and recognition mechanisms. The dimer presents eight manganese binding sites that induce structural conformations essential for DNA binding. The analysis of the protein-DNA interfaces elucidates the significance of Tyr59 and helix H3 sequence in the interaction with the DNA. Finally, the structure in solution as determined by small angle X-ray scattering experiments and supported by AlphaFold modelling provides a model illustrating the conformational changes induced upon metal binding.Competing Interest StatementThe authors have declared no competing interest.

2017
Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

2015
Palma, AS, Liu Y, Zhang H, Zhang Y, McCleary BV, Yu G, Huang Q, Guidolin LS, Ciocchini AE, Torosantucci A, Wang D, Carvalho AL, Fontes CM, Mulloy B, Childs RA, Feizi T, Chai W.  2015.  Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry. Mol Cell Proteomics. AbstractWebsite

Glucans are polymers of D-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes including immunomodulation, anti-cancer activities, pathogen virulence and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure-function studies and their exploitation. We describe construction of a glucome microarray, the first sequence-defined glycome-scale microarray, using a designer approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. The negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear homo and hetero and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signalling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides.

2012
Palma, AS, Liu Y, Zhang Y, Zhang H, Luis AS, Carvalho AL, Gilbert HJ, Boraston A, Fontes CMGA, Chai W, Ten F.  2012.  Designer-oligosaccharide microarrays to decipher ligands in mammalian and prokaryotic glucan-recognition systems. Glycobiology. 22:1612-1613., Number 11 AbstractWebsite
n/a
1996
Zajc, A, Romao MJ, Turk B, Huber R.  1996.  Crystallographic and fluorescence studies of ligand binding to N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. Journal of Molecular Biology. 263:269-283., Number 2 AbstractWebsite
n/a