Publications

Export 33 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U [V] W X Y Z   [Show ALL]
{
Vilela-Alves, G, Manuel RR, Pedrosa N, Cardoso Pereira IA, Romão MJ, Mota C.  2024.  {Structural and biochemical characterization of the M405S variant of ıt Desulfovibrio vulgaris} formate dehydrogenase}, May. Acta Crystallographica Section F. 80:98–106., Number 5 AbstractWebsite

Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO${\sb 2}$ to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of ıt Desulfovibrio vulgaris} formate dehydrogenase AB (ıt Dv}FdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine S${\sp {$δ$}}$ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO${\sb 2}$ reduction, together with an increased sensitivity to oxygen inactivation.

T
Vilela-Alves, G, Manuel RR, Oliveira AR, Pereira IC, Romão MJ, Mota C.  2023.  Tracking W-Formate Dehydrogenase Structural Changes During Catalysis and Enzyme Reoxidation. International Journal of Molecular Sciences. 24, Number 1 AbstractWebsite

Metal-dependent formate dehydrogenases (Fdh) catalyze the reversible conversion of CO2 to formate, with unrivalled efficiency and selectivity. However, the key catalytic aspects of these enzymes remain unknown, preventing us from fully benefiting from their capabilities in terms of biotechnological applications. Here, we report a time-resolved characterization by X-ray crystallography of the Desulfovibrio vulgaris Hildenborough SeCys/W-Fdh during formate oxidation. The results allowed us to model five different intermediate structures and to chronologically map the changes occurring during enzyme reduction. Formate molecules were assigned for the first time to populate the catalytic pocket of a Fdh. Finally, the redox reversibility of DvFdhAB in crystals was confirmed by reduction and reoxidation structural studies.

Romero, A, Varela PF, Romao MJ, Sanz L, TopferPetersen E, Calvete JJ.  1997.  The three-dimensional structure of mammalian spermadhesins determined by x-ray crystallography. European Journal of Cell Biology. 74:13-13. AbstractWebsite
n/a
S
Vilela-Alves, G, Manuel RR, Viegas A, Carpentier P, Biaso F, Guigliarelli B, Pereira IAC, Romão MJ, Mota C.  2024.  Substrate-dependent oxidative inactivation of a W-dependent formate dehydrogenase involving selenocysteine displacement. bioRxiv. : Cold Spring Harbor Laboratory AbstractWebsite

Metal-dependent formate dehydrogenases are very promising targets for enzyme optimization and design of bio-inspired catalysts for CO2 reduction, towards novel strategies for climate change mitigation. For effective application of these enzymes, the catalytic mechanism must be fully understood, and the molecular determinants clarified. Despite numerous studies, several doubts persist, namely regarding the role played by the possible dissociation of the SeCys ligand from the Mo/W active site. Additionally, the O2 sensitivity of these enzymes must also be understood as it poses an important obstacle for biotechnological applications. Here we present a combined biochemical, spectroscopic, and structural characterization of Desulfovibrio vulgaris FdhAB (DvFdhAB) when exposed to oxygen in the presence of a substrate (formate or CO2). This study reveals that O2 inactivation is promoted by the presence of either substrate and involves forming a new species in the active site, captured in the crystal structures, where the SeCys ligand is displaced from tungsten coordination and replaced by a dioxygen or peroxide molecule. This new form was reproducibly obtained and supports the conclusion that, although W-DvFdhAB can catalyze the oxidation of formate in the presence of oxygen for some minutes, it gets irreversibly inactivated after prolonged O2 exposure in the presence of either substrate. These results reveal that oxidative inactivation does not require reduction of the metal, as widely assumed, as it can also occur in the oxidized state in the presence of CO2.Competing Interest StatementThe authors have declared no competing interest.AORAldehyde Oxido-reductaseDTTDithiothreitolDvDesulfovibrio vulgarisEPRElectron Paramagnetic ResonanceFdhFormate dehydrogenaseHPHigh PressureMGDMolybdopterin Guanine DinucleotidesNDNew dropROSReactive Oxygen SpeciesSODSuperoxide dismutaseTSAThermal Shift Assay

Voityuk, AA, Albert K, Romao MJ, Huber R, Rosch N.  1998.  Substrate oxidation in the active site of xanthine oxidase and related enzymes. A model density functional study. Inorganic Chemistry. 37:176-180., Number 2 AbstractWebsite
n/a
Bras, JLA, Cartmell A, Carvalho ALM, Verze G, Bayer EA, Vazana Y, Correia MAS, Prates JAM, Ratnaparkhe S, Boraston AB, Romao MJ, Fontes CMGA, Gilbert HJ.  2011.  Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proceedings of the National Academy of Sciences of the United States of America. 108:5237-5242., Number 13 AbstractWebsite
n/a
Pires, VMR, Pereira PMM, Brás JLA, Correia M, Cardoso V, Bule P, Alves VD, Najmudin S, Venditto I, Ferreira LMA, Romão MJ, Carvalho AL, Fontes CMGA, Prazeres DM.  2017.  Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C, mar. Journal of Biological Chemistry. 292:4847–4860., Number 12 AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Viegas, A, Sardinha J, Freire F, Duarte DF, Carvalho AL, Fontes CMGA, Romao MJ, Macedo AL, Cabrita EJ.  2013.  Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11). Biochemical Journal. 451:289-300. AbstractWebsite
n/a
R
Viciosa, MT, Correia NT, Salmeron Sanchez M, Carvalho AL, Romao MJ, Gomez Ribelles JL, Dionisio M.  2009.  Real-Time Monitoring of Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former. Journal of Physical Chemistry B. 113:14209-14217., Number 43 AbstractWebsite
n/a
P
Voityuk, AA, Albert K, Kostlmeier S, Nasluzov VA, Neyman KM, Hof P, Huber R, Romao MJ, Rosch N.  1997.  Prediction of alternative structures of the molybdenum site in the xanthine oxidase-related aldehyde oxide reductase. Journal of the American Chemical Society. 119:3159-3160., Number 13 AbstractWebsite
n/a
O
Verma, AK, Goyal A, Freire F, Bule P, Venditto I, Bras JLA, Santos H, Cardoso V, Bonifacio C, Thompson A, Romao MJ, Prates JAM, Ferreira LMA, Fontes CMGA, Najmudin S.  2013.  Overexpression, crystallization and preliminary X-ray crystallographic analysis of glucuronoxylan xylanohydrolase (Xyn30A) from Clostridium thermocellum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 69:1440-1442. AbstractWebsite
n/a
M
Thoenes, U, Flores OL, Neves A, Devreese B, Van Beeumen JJ, Huber R, Romao MJ, Legall J, Moura JJG, Rodriguespousada C.  1994.  MOLECULAR-CLONING AND SEQUENCE-ANALYSIS OF THE GENE OF THE MOLYBDENUM-CONTAINING ALDEHYDE OXIDOREDUCTASE OF DESULFOVIBRIO-GIGAS - THE DEDUCED AMINO-ACID-SEQUENCE SHOWS SIMILARITY TO XANTHINE DEHYDROGENASE. European Journal of Biochemistry. 220:901-910., Number 3 AbstractWebsite
n/a
Viegas, A, Bras NF, Cerqueira NMFSA, Fernandes PA, Prates JAM, Fontes CMGA, Bruix M, Romao MJ, Carvalho AL, Ramos MJ, Macedo AL, Cabrita EJ.  2008.  Molecular determinants of ligand specificity in family 11 carbohydrate binding modules - an NMR, X-ray crystallography and computational chemistry approach. Febs Journal. 275:2524-2535., Number 10 AbstractWebsite
n/a
Ribeiro, DO, Viegas A, Pires VMR, Medeiros-Silva J, Bule P, Chai W, Marcelo F, Fontes CMGA, Cabrita EJ, Palma AS, Carvalho AL.  2020.  Molecular basis for the preferential recognition of β1,3-1,4-glucans by the family 11 carbohydrate-binding module from Clostridium thermocellum. The FEBS Journal. 287:2723-2743., Number 13 AbstractWebsite

Understanding the specific molecular interactions between proteins and β1,3-1,4-mixed-linked d-glucans is fundamental to harvest the full biological and biotechnological potential of these carbohydrates and of proteins that specifically recognize them. The family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11) is known for its binding preference for β1,3-1,4-mixed-linked over β1,4-linked glucans. Despite the growing industrial interest of this protein for the biotransformation of lignocellulosic biomass, the molecular determinants of its ligand specificity are not well defined. In this report, a combined approach of methodologies was used to unravel, at a molecular level, the ligand recognition of CtCBM11. The analysis of the interaction by carbohydrate microarrays and NMR and the crystal structures of CtCBM11 bound to β1,3-1,4-linked glucose oligosaccharides showed that both the chain length and the position of the β1,3-linkage are important for recognition, and identified the tetrasaccharide Glcβ1,4Glcβ1,4Glcβ1,3Glc sequence as a minimum epitope required for binding. The structural data, along with site-directed mutagenesis and ITC studies, demonstrated the specificity of CtCBM11 for the twisted conformation of β1,3-1,4-mixed-linked glucans. This is mediated by a conformation–selection mechanism of the ligand in the binding cleft through CH-π stacking and a hydrogen bonding network, which is dependent not only on ligand chain length, but also on the presence of a β1,3-linkage at the reducing end and at specific positions along the β1,4-linked glucan chain. The understanding of the detailed mechanism by which CtCBM11 can distinguish between linear and mixed-linked β-glucans strengthens its exploitation for the design of new biomolecules with improved capabilities and applications in health and agriculture. Database Structural data are available in the Protein Data Bank under the accession codes 6R3M and 6R31.

L
De Schutter, A, Correia HD, Freire DM, Rivas MG, Rizzi A, Santos-Silva T, González PJ, Van Doorslaer S.  2015.  Ligand Binding to Chlorite Dismutase from Magnetospirillum sp, October. The journal of physical chemistry. B. 119:13859—13869., Number 43 AbstractWebsite
n/a
I
Sadeghi, SJ, Valetti F, Cunha CA, Romao MJ, Soares CM, Gilardi G.  2000.  Ionic strength dependence of the non-physiological electron transfer between flavodoxin and cytochrome c(553) from D-vulgaris. Journal of Biological Inorganic Chemistry. 5:730-737., Number 6 AbstractWebsite
n/a
Vidinha, P, Lourenco NMT, Pinheiro C, Bras AR, Carvalho T, Santos-Silva T, Mukhopadhyay A, Romao MJ, Parola J, Dionisio M, Cabral JMS, Afonso CAM, Barreiros S.  2008.  Ion jelly: a tailor-made conducting material for smart electrochemical devices. Chemical Communications. :5842-5844., Number 44 AbstractWebsite
n/a
H
Fv, V, Violante S, Gomes C, Carvalho AL, Romao MJ, Gaspar MM, Cruz MEM, Soveral G, Wanders RJ, Leandro P, de Almeida TV.  2007.  The human carnitine acylcarnitine translocase (hCACT): Strategies for its heterologous expression, purification and crystallization. Journal of Inherited Metabolic Disease. 30:53-53. AbstractWebsite
n/a
F
Vidossich, P, Castañeda Moreno LE, Mota C, de Sanctis D, Miscione GP, De Vivo M.  2020.  Functional Implications of Second-Shell Basic Residues for dUTPase DR2231 Enzymatic Specificity, 2020. ACS CatalysisACS Catalysis. 10(23):13825-13833.: American Chemical Society AbstractWebsite

Nucleotide-processing enzymes are key players in biological processes. They often operate through high substrate specificity for catalysis. How such specificity is achieved is unclear. Here, we dealt with this question by investigating all-α dimeric deoxyuridine triphosphate nucleotidohydrolases (dUTPases). Typically, these dUTPases hydrolyze either dUTP or deoxyuridine diphosphate (dUDP) substrates. However, the dUTPase enzyme DR2231 from Deinococcus radiodurans selectively hydrolyzes dUTP only, and not dUDP. By means of extended classical molecular dynamics simulations and quantum chemical calculations, we show that DR2231 achieves this specificity for dUTP via second-shell basic residues that, together with the two catalytic magnesium ions, contribute to properly orienting the γ-phosphate of dUTP in a prereactive state. This allows a nucleophilic water to be correctly placed and activated in order to perform substrate hydrolysis. We show that this enzymatic mechanism is not viable when dUDP is bound to DR2231. Importantly, in several other dUTPases capable of hydrolyzing either dUTP or dUDP, we detected that active site second-shell basic residues are more in number, anchoring the β-phosphate of the nucleotide substrate too, in contrast to what is observed in DR2231. Thus, strategically located basic second-shell residues mediate precise reactant positioning at the catalytic site, determining substrate specificity in dUTPases and possibly in other structurally similar nucleotide-processing metalloenzymes.Nucleotide-processing enzymes are key players in biological processes. They often operate through high substrate specificity for catalysis. How such specificity is achieved is unclear. Here, we dealt with this question by investigating all-α dimeric deoxyuridine triphosphate nucleotidohydrolases (dUTPases). Typically, these dUTPases hydrolyze either dUTP or deoxyuridine diphosphate (dUDP) substrates. However, the dUTPase enzyme DR2231 from Deinococcus radiodurans selectively hydrolyzes dUTP only, and not dUDP. By means of extended classical molecular dynamics simulations and quantum chemical calculations, we show that DR2231 achieves this specificity for dUTP via second-shell basic residues that, together with the two catalytic magnesium ions, contribute to properly orienting the γ-phosphate of dUTP in a prereactive state. This allows a nucleophilic water to be correctly placed and activated in order to perform substrate hydrolysis. We show that this enzymatic mechanism is not viable when dUDP is bound to DR2231. Importantly, in several other dUTPases capable of hydrolyzing either dUTP or dUDP, we detected that active site second-shell basic residues are more in number, anchoring the β-phosphate of the nucleotide substrate too, in contrast to what is observed in DR2231. Thus, strategically located basic second-shell residues mediate precise reactant positioning at the catalytic site, determining substrate specificity in dUTPases and possibly in other structurally similar nucleotide-processing metalloenzymes.

Leisico, F, V. Vieira D, Figueiredo TA, Silva M, Cabrita EJ, Sobral RG, Ludovice AM, Trincão J, Romão MJ, de Lencastre H, Santos-Silva T.  2018.  First insights of peptidoglycan amidation in Gram-positive bacteria - the high-resolution crystal structure of Staphylococcus aureus glutamine amidotransferase GatD, 2018. Scientific Reports. 8(1):5313. AbstractWebsite

Gram-positive bacteria homeostasis and antibiotic resistance mechanisms are dependent on the intricate architecture of the cell wall, where amidated peptidoglycan plays an important role. The amidation reaction is carried out by the bi-enzymatic complex MurT-GatD, for which biochemical and structural information is very scarce. In this work, we report the first crystal structure of the glutamine amidotransferase member of this complex, GatD from Staphylococcus aureus, at 1.85 Å resolution. A glutamine molecule is found close to the active site funnel, hydrogen-bonded to the conserved R128. In vitro functional studies using 1H-NMR spectroscopy showed that S. aureus MurT-GatD complex has glutaminase activity even in the absence of lipid II, the MurT substrate. In addition, we produced R128A, C94A and H189A mutants, which were totally inactive for glutamine deamidation, revealing their essential role in substrate sequestration and catalytic reaction. GatD from S. aureus and other pathogenic bacteria share high identity to enzymes involved in cobalamin biosynthesis, which can be grouped in a new sub-family of glutamine amidotransferases. Given the ubiquitous presence of GatD, these results provide significant insights into the molecular basis of the so far undisclosed amidation mechanism, contributing to the development of alternative therapeutics to fight infections.

E
Bras, JLA, Carvalho AL, Viegas A, Najmudin S, Alves VD, Prates JAM, Ferreira LMA, Romao MJ, Gilbert HJ, Fontes CMGA.  2012.  ESCHERICHIA COLI EXPRESSION, PURIFICATION, CRYSTALLIZATION, AND STRUCTURE DETERMINATION OF BACTERIAL COHESIN-DOCKERIN COMPLEXES. Cellulases. 510(Gilbert, H. J., Ed.).:395-415. Abstract
n/a
Watson, C, Niks D, Hille R, Vieira M, Schoepp-Cothenet B, Marques AT, Romão MJ, Santos-Silva T, Santini JM.  2017.  Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1858:865-872., Number 10 AbstractWebsite

Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s−1 and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.

Cunha, CA, Romao MJ, Sadeghi SJ, Valetti F, Gilardi G, Soares CM.  1999.  Effects of protein-protein interactions on electron transfer: docking and electron transfer calculations for complexes between flavodoxin and c-type cytochromes. Journal of Biological Inorganic Chemistry. 4:360-374., Number 3 AbstractWebsite
n/a
D
Duarte, M, Viegas A, Alves VD, Prates JAM, Ferreira LMA, Najmudin S, Cabrita EJ, Carvalho AL, Fontes CMGA, Bule P.  2021.  A dual cohesin–dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome. Journal of Biological Chemistry. 296:100552. AbstractWebsite

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin–dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin–dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.

Lopes, R, Raya-Barón Á, Robalo PM, Vinagreiro C, Barroso S, Romão MJ, Fernández I, Pereira MM, Royo B.  2021.  Donor Functionalized Iron(II) N-Heterocyclic Carbene Complexes in Transfer Hydrogenation Reactions. European Journal of Inorganic Chemistry. 2021:22-29., Number 1 AbstractWebsite

Two piano-stool iron(II) complexes bearing N-heterocyclic carbene ligands outfitted with acetamide- and amine-pendant arms [Cp*Fe(NHCR)(CO)I] {Cp* = η5-tetramethylcyclopentadienyl; R = CH2CONEt2 (3), (CH2)2NEt2 (4)}, have been prepared and fully characterized. Their catalytic activity in transfer hydrogenation (TH) of ketones using iPrOH as a hydrogen source and catalytic amounts of base (LiOtBu) has been explored, along with that of previously reported [CpFe(NHCR)(CO)I] {R = nBu (5), (CH2)2OH (6), Et (7), and (CH2)3OH (8)} complexes containing hydroxyl and nonfunctionalized alkyl arms. Complex 3 displayed the highest catalytic activity of the whole series 3–8, reaching a TOF50 value of 533 h–1. NMR monitoring of the stoichiometric reaction of 3 with LiOtBu, allowed the identification of a new species 3' containing a deprotonated amidate moiety, which has been fully characterized by 1H, 13C, and 15N NMR. Finally, a green protocol for the reduction of ketones through TH using glycerol as a hydrogen source, under microwave irradiation in the presence of catalytic amounts of 3 and base has been developed.