Publications

Export 72 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Ribeiro, DO, Viegas A, Pires VMR, Medeiros-Silva J, Bule P, Chai W, Marcelo F, Fontes CMGA, Cabrita EJ, Palma AS, Carvalho AL.  2020.  Molecular basis for the preferential recognition of β1,3-1,4-glucans by the family 11 carbohydrate-binding module from Clostridium thermocellum. The FEBS Journal. 287:2723-2743., Number 13 AbstractWebsite

Understanding the specific molecular interactions between proteins and β1,3-1,4-mixed-linked d-glucans is fundamental to harvest the full biological and biotechnological potential of these carbohydrates and of proteins that specifically recognize them. The family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11) is known for its binding preference for β1,3-1,4-mixed-linked over β1,4-linked glucans. Despite the growing industrial interest of this protein for the biotransformation of lignocellulosic biomass, the molecular determinants of its ligand specificity are not well defined. In this report, a combined approach of methodologies was used to unravel, at a molecular level, the ligand recognition of CtCBM11. The analysis of the interaction by carbohydrate microarrays and NMR and the crystal structures of CtCBM11 bound to β1,3-1,4-linked glucose oligosaccharides showed that both the chain length and the position of the β1,3-linkage are important for recognition, and identified the tetrasaccharide Glcβ1,4Glcβ1,4Glcβ1,3Glc sequence as a minimum epitope required for binding. The structural data, along with site-directed mutagenesis and ITC studies, demonstrated the specificity of CtCBM11 for the twisted conformation of β1,3-1,4-mixed-linked glucans. This is mediated by a conformation–selection mechanism of the ligand in the binding cleft through CH-π stacking and a hydrogen bonding network, which is dependent not only on ligand chain length, but also on the presence of a β1,3-linkage at the reducing end and at specific positions along the β1,4-linked glucan chain. The understanding of the detailed mechanism by which CtCBM11 can distinguish between linear and mixed-linked β-glucans strengthens its exploitation for the design of new biomolecules with improved capabilities and applications in health and agriculture. Database Structural data are available in the Protein Data Bank under the accession codes 6R3M and 6R31.

2019
Peixoto, D, Malta G, Cruz H, Barroso S, Carvalho AL, Ferreira LM, Branco PS.  2019.  N-Heterocyclic olefin catalysis for the ring opening of cyclic amidine compounds: a pathway to the synthesis of ε-caprolactam and γ-lactam-derived amines, 2019. The Journal of Organic Chemistry. : American Chemical Society AbstractWebsite

n/a

Correia, VG, Pinheiro BA, Carvalho AL, Palma AS.  2019.  Resistance to Aminoglycosides. Antibiotic Drug Resistance. :1-38.: John Wiley & Sons, Ltd Abstract

Summary The emergence of bacterial resistance to different antibiotics in clinical use, together with the knowledge on the mechanisms by which bacteria resist the action of aminoglycosides, have contributed to the renewed interest in these molecules as potential antimicrobials. Here, we give an overview on natural and semisynthetic aminoglycosides and their structural features and modes of action, focusing on the structural insight underlying resistance mechanisms. Developments on carbohydrate chemistry and microarray technology are highlighted as powerful approaches toward generation of new aminoglycosides and for screening their interactions with RNAs and proteins. The link between antibiotic uptake and the human gut microbiome is also addressed, focusing on gut microbiome function and composition, antibiotic-induced alterations in host health, and antibiotic resistance. In addition, strategies to modulate human microbiome responses to antibiotics are discussed as novel approaches for aminoglycoside usage and for the effectiveness of antibiotic therapy.

2018
Bule, P, Pires VMR, Alves VD, Carvalho AL, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Noach I, Bayer EA, Najmudin S, Fontes CMGA.  2018.  Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction, 2018. Scientific Reports. 8(1):6987. AbstractWebsite

Cellulosomes are highly sophisticated molecular nanomachines that participate in the deconstruction of complex polysaccharides, notably cellulose and hemicellulose. Cellulosomal assembly is orchestrated by the interaction of enzyme-borne dockerin (Doc) modules to tandem cohesin (Coh) modules of a non-catalytic primary scaffoldin. In some cases, as exemplified by the cellulosome of the major cellulolytic ruminal bacterium Ruminococcus flavefaciens, primary scaffoldins bind to adaptor scaffoldins that further interact with the cell surface via anchoring scaffoldins, thereby increasing cellulosome complexity. Here we elucidate the structure of the unique Doc of R. flavefaciens FD-1 primary scaffoldin ScaA, bound to Coh 5 of the adaptor scaffoldin ScaB. The RfCohScaB5-DocScaA complex has an elliptical architecture similar to previously described complexes from a variety of ecological niches. ScaA Doc presents a single-binding mode, analogous to that described for the other two Coh-Doc specificities required for cellulosome assembly in R. flavefaciens. The exclusive reliance on a single-mode of Coh recognition contrasts with the majority of cellulosomes from other bacterial species described to date, where Docs contain two similar Coh-binding interfaces promoting a dual-binding mode. The discrete Coh-Doc interactions observed in ruminal cellulosomes suggest an adaptation to the exquisite properties of the rumen environment.

Branco, PS, Peixoto D, Figueiredo M, Malta G, Roma-Rodrigues C, Batista PV, Fernandes AR, Barroso S, Carvalho AL, Afonso CAM, Ferreira LM.  2018.  Synthesis, cytotoxicity evaluation in human cell lines and in vitro DNA interaction of a hetero arylidene-9(10H)-anthrone. European Journal of Organic Chemistry. :n/a–n/a. AbstractWebsite

A new and never yet reported hetero arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally attributed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity (Kb = 2.0(± 0.20) x 105 M-1) which is 10x higher than that described for doxorubicin (Kb = 3.2 (±0.23) × 104 M-1). Furthermore, compound 4 quenches the fluorescence emission of GelRed-CT-DNA system with a quenching constant (KSV) of 3.3(±0.3) x 103 M-1 calculated by the Stern-Volmer equation.

Kumar, K, Correia M, Pires VR, Dhillon A, Sharma K, Rajulapati V, Fontes CMGA, Carvalho AL, Goyal A.  2018.  Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. International Journal of Biological Macromolecules. :-. AbstractWebsite

Abstract The family 81 glycoside hydrolase (GH81) from Clostridium thermocellum is a β-1,3-glucanase belonging to cellulosomal complex. The gene encoding \{GH81\} from Clostridium thermocellum (CtLam81A) was cloned and expressed displaying a molecular mass of  82 kDa. CtLam81A showed maximum activity against laminarin (100 U/mg), followed by curdlan (65 U/mg), at pH 7.0 and 75 °C. CtLam81A displayed Km, 2.1 ± 0.12 mg/ml and Vmax, 109 ± 1.8 U/mg, against laminarin under optimized conditions. CtLam81A activity was significantly enhanced by Ca2+ or Mg2+ ions. Melting curve analysis of CtLam81A showed an increase in melting temperature from 91 °C to 96 °C by Ca2+ or Mg2+ ions and decreased to 82 °C by EDTA, indicating that Ca2+ and Mg2+ ions may be involved in catalysis and in maintaining structural integrity. \{TLC\} and MALDI-TOF analysis of β-1,3-glucan hydrolysed products released initially, showed β-1,3-glucan-oligosaccharides degree of polymerization (DP) from \{DP2\} to DP7, confirming an endo-mode of action. The catalytically inactive mutant CtLam81A-E515A generated by site-directed mutagenesis was co-crystallized and tetragonal crystals diffracting up to 1.4 Å resolution were obtained. CtLam81A-E515A contained 15 α-helices and 38 β-strands forming a four-domain structure viz. a β-sandwich domain I at N-terminal, an α/β-domain II, an (α/α)6 barrel domain III, and a small 5-stranded β-sandwich domain IV.

Ribeiro, DO, Pinheiro BA, Carvalho AL, Palma AS.  2018.  Targeting protein-carbohydrate interactions in plant cell-wall biodegradation: the power of carbohydrate microarrays. Carbohydrate Chemistry: Chemical and Biological Approaches Volume 43. 43:159-176.: The Royal Society of Chemistry Abstract

The plant cell-wall is constituted by structurally diverse polysaccharides. The biodegradation of these is a crucial process for life sustainability. Cellulolytic microorganisms are highly efficient in this process by assembling modular architectures of carbohydrate-active enzymes with appended non-catalytic carbohydrate-binding modules (CBMs). Carbohydrate microarrays offer high-throughput and sensitive tools for uncovering carbohydrate-binding specificities of CBMs{,} which is pivotal to understand the function of these modules in polysaccharide biodegradation mechanisms. Features of this technology will be here briefly reviewed with highlights of microarray approaches to study plant-carbohydrates and CBM-carbohydrate interactions{,} along with an overview of plant polysaccharides and microorganisms strategies for their recognition.

2017
Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

Pires, VMR, Pereira PMM, Brás JLA, Correia M, Cardoso V, Bule P, Alves VD, Najmudin S, Venditto I, Ferreira LMA, Romão MJ, Carvalho AL, Fontes CMGA, Prazeres DM.  2017.  Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C, mar. Journal of Biological Chemistry. 292:4847–4860., Number 12 AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Otrelo-Cardoso, AR, Nair RR, Correia MAS, Cordeiro RCS, Panjkovich A, Svergun DI, Santos-Silva T, Rivas MG.  2017.  Highly selective tungstate transporter protein TupA from Desulfovibrio alaskensis G20, 2017. Scientific Reports. 7(1):5798. AbstractWebsite

Molybdenum and tungsten are taken up by bacteria and archaea as their soluble oxyanions through high affinity transport systems belonging to the ATP-binding cassette (ABC) transporters. The component A (ModA/TupA) of these transporters is the first selection gate from which the cell differentiates between MoO4 2−, WO4 2− and other similar oxyanions. We report the biochemical characterization and the crystal structure of the apo-TupA from Desulfovibrio desulfuricans G20, at 1.4 Å resolution. Small Angle X-ray Scattering data suggests that the protein adopts a closed and more stable conformation upon ion binding. The role of the arginine 118 in the selectivity of the oxyanion was also investigated and three mutants were constructed: R118K, R118E and R118Q. Isothermal titration calorimetry clearly shows the relevance of this residue for metal discrimination and oxyanion binding. In this sense, the three variants lost the ability to coordinate molybdate and the R118K mutant keeps an extremely high affinity for tungstate. These results contribute to an understanding of the metal-protein interaction, making it a suitable candidate for a recognition element of a biosensor for tungsten detection.

Polino, M, Carvalho AL, Juknaitė L, Portugal CAM, Coelhoso IM, Romão MJ, Crespo JG.  2017.  Ion-Exchange Membranes for Stable Derivatization of Protein Crystals, 2017. Crystal Growth & DesignCrystal Growth & Design. : American Chemical Society AbstractWebsite
n/a
Hussain, A, Semeano ATS, Palma SICJ, Pina AS, Almeida J, Medrado BF, Pádua ACCS, Carvalho AL, Dionísio M, Li RWC, Gamboa H, Ulijn RV, Gruber J, Roque ACA.  2017.  Tunable Gas Sensing Gels by Cooperative Assembly. Advanced Functional Materials. 27:1700803–n/a., Number 27 AbstractWebsite

The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels' structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli.

2016
Brás, JLA, Pinheiro BA, Cameron K, Cuskin F, Viegas A, Najmudin S, Bule P, Pires VMR, Romão MJ, Bayer EA, Spencer HL, Smith S, Gilbert HJ, Alves VD, Carvalho AL, Fontes CMGA.  2016.  Diverse specificity of cellulosome attachment to the bacterial cell surface, dec. Scientific Reports. 6:38292.: The Author(s) AbstractWebsite

During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.

2015
Pessoa, JC, Garribba E, Santos MFA, Santos-Silva T.  2015.  Vanadium and proteins: Uptake, transport, structure, activity and function, 2015/10/15/. The Ninth International Symposium on the Chemistry and Biological Chemistry of Vanadium. 301–302:49-86. AbstractWebsite

AbstractVanadium is an element ubiquitously present in our planet's crust and thus there are several organisms that use vanadium for activity or function of proteins. Examples are the vanadium-dependent haloperoxidases and the vanadium-containing nitrogenases. Some organisms that use vanadium have extremely efficient and selective protein-dependent systems for uptake and transport of vanadium and are able to accumulate high levels of vanadium from seawater, vanabins being a unique family of vanadium binding proteins found in ascidians involved in this process. For all of the systems a discussion regarding the role of the V-containing proteins is provided, mostly centered on structural aspects of the vanadium site and, when possible or relevant, relating this to the mechanisms operating. Phosphate is very important in biological systems and is involved in an extensive number of biological recognition and bio-catalytic systems. Vanadate(V) is able to inhibit many of the enzymes involved in these processes, such as ATPases, phosphatases, ribonucleases, phosphodiesterases, phosphoglucomutase and glucose-6-phosphatase, and it appears clear that this is closely related to the analogous physicochemical properties of vanadate and phosphate. The ability of vanadium to interfere with the metabolic processes involving Ca2+ and Mg2+, connected with its versatility to undergo changes in coordination geometry, allow V to influence the function of a large variety of phosphate-metabolizing enzymes and vanadate(V) salts and compounds have been frequently used either as inhibitors of these enzymes, or as probes to study the mechanisms of their reactions and catalytic cycle. In this review we give an overview of the many examples so far reported, also disclosing that vanadate(IV) may also have an equally efficient inhibiting effect. The prospective application of vanadium compounds as therapeutics has also been an important topic of research. How vanadium may be transported in blood and up-taken by cells are particularly relevant issues, this being mainly dependent on transferrin (and albumin) present in blood plasma. The thousands of studies reported on the effects of vanadium compounds reflect the complexity of the interactions occurring. Although it is not easy to anticipate/determine if a particular effect observed in a test tube or in vitro is also going to take place in vivo, it is clear that vanadium ions may interfere with many metabolic processes at many distinct levels. Emphasis is given on structural and functional aspects of vanadium–protein interactions relevant for vanadium binding and/or for clarification of role of the metal center in the reaction mechanisms. The additional knowledge that the presence of vanadium can change the action of a protein, other than simply inhibiting it, may also be important to understand how vanadium affects biological systems. This possibility, together with the vanadate–phosphate analogy further potentiates the belief that vanadium probably has relevant functions in living beings, which may involve interaction or incorporation of the metal ion and/or its compounds with several proteins.

Seixas, JD, Santos MFA, Mukhopadhyay A, Coelho AC, Reis PM, Veiros LF, Marques AR, Penacho N, Goncalves AML, Romao MJ, Bernardes GJL, Santos-Silva T, Romao CC.  2015.  A contribution to the rational design of Ru(CO)(3)Cl2L complexes for in vivo delivery of CO. Dalton Transactions. 44:5058-5075., Number 11 AbstractWebsite

A few ruthenium based metal carbonyl complexes, e.g. CORM-2 and CORM-3, have therapeutic activity attributed to their ability to deliver CO to biological targets. In this work, a series of related complexes with the formula [Ru(CO)(3)Cl2L] (L = DMSO (3), L-H3CSO(CH2)(2)CH(NH2)CO2H) (6a); D,L-H3CSO(CH2)(2)CH-(NH2)CO2H (6b); 3-NC5H4(CH2)(2)SO3.Na (7); 4-NC5H4(CH2)(2)SO3Na (8); PTA (9); DAPTA (10); H3CS-(CH2)(2)CH(OH) CO2H (11); CNCMe2CO2Me (12); CNCMeEtCO2Me (13); CN(c-C3H4)CO2Et) (14)) were designed, synthesized and studied. The effects of L on their stability, CO release profile, cytotoxicity and anti-inflammatory properties are described. The stability in aqueous solution depends on the nature of L as shown using HPLC and LC-MS studies. The isocyanide derivatives are the least stable complexes, and the S-bound methionine oxide derivative is the more stable one. The complexes do not release CO gas to the headspace, but release CO2 instead. X-ray diffraction of crystals of the model protein Hen Egg White Lysozyme soaked with 6b (4UWN) and 8 (4UWV) shows the addition of Ru-II(CO)(H2O)(4) at the His15 binding site. Soakings with 7 (4UWU) produced the metallacarboxylate [Ru(COOH)(CO)(H2O)(3)](+) bound to the His15 site. The aqueous chemistry of these complexes is governed by the water-gas shift reaction initiated with the nucleophilic attack of HO- on coordinated CO. DFT calculations show this addition to be essentially barrierless. The complexes have low cytotoxicity and low hemolytic indices. Following i.v. administration of CORM-3, the in vivo bio-distribution of CO differs from that obtained with CO inhalation or with heme oxygenase stimulation. A mechanism for CO transport and delivery from these complexes is proposed.

Palma, AS, Liu Y, Zhang H, Zhang Y, McCleary BV, Yu G, Huang Q, Guidolin LS, Ciocchini AE, Torosantucci A, Wang D, Carvalho AL, Fontes CM, Mulloy B, Childs RA, Feizi T, Chai W.  2015.  Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry. Mol Cell Proteomics. AbstractWebsite

Glucans are polymers of D-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes including immunomodulation, anti-cancer activities, pathogen virulence and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure-function studies and their exploitation. We describe construction of a glucome microarray, the first sequence-defined glycome-scale microarray, using a designer approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. The negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear homo and hetero and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signalling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides.

2014
Pessoa, JC, Gonçalves G, Roy S, Correia I, Mehtab S, Santos MFA, Santos-Silva T.  2014.  New insights on vanadium binding to human serum transferrin. Inorganica Chimica Acta. 420:60-68. AbstractWebsite

Abstract The knowledge on the binding of vanadium ions and complexes to serum proteins and how vanadium might be transported in blood and up-taken by cells has received much attention during the last decade, particularly as far as the transport of VIVO2+ is concerned. In this work we revise and discuss some relevant aspects of previous research, namely the two main types of binding proposed for transport of VIVO(carrier)2 complexes. New results, obtained by circular dichroism (CD), \{EPR\} and gel electrophoresis, regarding the binding of vanadium to hTF in the oxidation states +5 and +3 are also presented. Namely, evidences for the binding of VV-species to diferric-transferrin, designated by (FeIII)2hTF, as well as to (AlIII)2hTF, are presented and discussed, the possibility of up-take of vanadate by cells through (FeIII)2hTF endocytosis being suggested. It is also confirmed that \{VIII\} binds strongly to hTF, forming di-vanadium(III)-transferrin, designated by (VIII)2hTF, and gel electrophoresis experiments indicate that (VIII)2hTF corresponds to a ‘closed conformation’ similar to (FeIII)2hTF.

Ribeiro, D, Kulakova A, Quaresma P, Pereira E, Bonifacio C, Romao MJ, Franco R, Carvalho AL.  2014.  Use of Gold Nanoparticles as Additives in Protein Crystallization. Crystal Growth & Design. 14:222-227., Number 1 AbstractWebsite

Gold nanoparticles (AuNPs) exhibit unique properties that have made them a very attractive material for application in biological assays. Given the potentially interesting interactions between AuNPs and biological macromolecules, we investigated AuNPs-induced protein crystal growth. Differently functionalized AuNPs were tested as additives in cocrystallization studies with model proteins (hen egg white lysozyme (HEWL), ribonuclease A (RNase A), and proteinase K) as well as with case studies where there were problems in obtaining well-diffracting crystals. Trials were performed considering different crystallization drawbacks, from total absence of crystals to improvement of crystal morphology, size, twinning, and number of crystals per drop. Improvement of some of these factors was observed in the cases of HEWL, RNase A, phenylalanine hydroxylase (PAR), myoglobin, native aldehyde oxidase (AOH), and human albumin. In these proteins, the presence of the AuNPs promoted an increase in the size and/or better crystal morphology. From the systematic trials and subsequent observations, it can be concluded that the introduction of AuNPs should definitely be considered in crystal optimization trials to improve previously determined crystallization conditions.

Santos, MFA, Correia I, Oliveira AR, Garribba E, Pessoa JC, Santos-Silva T.  2014.  Vanadium Complexes as Prospective Therapeutics: Structural Characterization of a VIV Lysozyme Adduct. European Journal of Inorganic Chemistry. :n/a–n/a.: WILEY-VCH Verlag AbstractWebsite

The biological activity of vanadium complexes, namely, as insulin enhancers, is well known. We report a combined X-ray crystallography, electron paramagnetic resonance, and density functional theory study of the interaction of vanadium picolinate complexes with hen egg white lysozyme (HEWL). We show that the VIVO(pic)2 complex covalently binds to the COO– group of the side chain of Asp52 of HEWL. The long VIV=O bond obtained in the X-ray study is explained to be due to reduction of VIV to VIII during exposure of the crystals to the intense X-ray beam.

2013
Seixas, JD, Mukhopadhyay A, Santos-Silva T, Otterbein LE, Gallo DJ, Rodrigues SS, Guerreiro BH, Goncalves AML, Penacho N, Marques AR, Coelho AC, Reis PM, Romao MJ, Romao CC.  2013.  Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics. Dalton Transactions. 42:5985-5998., Number 17 AbstractWebsite
n/a
Coelho, C, Marangon J, Rodrigues D, Moura JJG, Romao MJ, Paes de Sousa PM, Correia dos Santos MM.  2013.  Induced peroxidase activity of haem containing nitrate reductases revealed by protein film electrochemistry. Journal of Electroanalytical Chemistry. 693:105-113. AbstractWebsite
n/a
Mehtab, S, Goncalves G, Roy S, Tomaz AI, Santos-Silva T, Santos MFA, Romao MJ, Jakusch T, Kiss T, Pessoa JC.  2013.  Interaction of vanadium(IV) with human serum apo-transferrin. Journal of Inorganic Biochemistry. 121:187-195. AbstractWebsite
n/a
Verma, AK, Goyal A, Freire F, Bule P, Venditto I, Bras JLA, Santos H, Cardoso V, Bonifacio C, Thompson A, Romao MJ, Prates JAM, Ferreira LMA, Fontes CMGA, Najmudin S.  2013.  Overexpression, crystallization and preliminary X-ray crystallographic analysis of glucuronoxylan xylanohydrolase (Xyn30A) from Clostridium thermocellum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 69:1440-1442. AbstractWebsite
n/a
Palma, AS, Pinheiro B, Liu Y, Takeda Y, Chai W, Ito Y, Romao MJ, Carvalho AL, Feizi T.  2013.  The Structural Basis of the Recognition of Di-glucosylated N-glycans by the ER Lectin Malectin. Glycobiology. 23:1368-1369., Number 11 AbstractWebsite
n/a
Pinheiro, BA, Carvalho AL, Romao MJ, Fontes CM.  2013.  Study of the cohesin-dockerin interaction and its role in the C. thermocellum cellulosome assembly. European Biophysics Journal with Biophysics Letters. 42:S180-S180. AbstractWebsite
n/a