Publications

Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
2021
Ali, MS, Muthukumaran J, Jain M, Santos-Silva T, Al-Lohedan HA, Al-Shuail NS.  2021.  Molecular interactions of cefoperazone with bovine serum albumin: Extensive experimental and computational investigations, 2021. 337:116354. AbstractWebsite

We investigated the binding of the cephalosporin-class drug cefoperazone (CFP) with bovine serum albumin (BSA) using spectroscopic techniques and in silico methods. The aim of this study was to (i) emphasize the importance of correcting for the inner filter effect in this type of study and (ii) understand the binding mechanism of CFP with BSA by addressing protein conformation and plausible binding sites. Formation of the complex was confirmed by UV–visible spectroscopy. Quenching of BSA fluorescence in the presence of CFP was also observed. Because of the high absorption of CFP in the fluorescence emission range of BSA, the fluorescence emission spectra were corrected for the inner filter effect. Fluorescence emission was studied at excitation wavelengths of 280 and 295 nm. The uncorrected data showed a significant contribution of tyrosine at the excitation wavelength of 280 nm; however, after correction, this contribution became negligible. The static-type mechanism was found to be involved in quenching, with almost 1:1 binding between BSA and CFP. Hydrogen bonding and hydrophobic forces were found to dominate the protein–ligand interactions with a slight decrease in the α-helical contents. Synchronous fluorescence spectral data (at Δλ = 15 and 60 nm) were also corrected for the inner filter effect, with the results being similar to those of excitation at 280 and 295 nm. Molecular docking and molecular dynamics (MD) simulation results suggest that, apart from the two known drug binding sites (drug site I and II), one putative binding site (binding site III) located between BSA domains 1 and 3 was also possible for CFP. MD simulations of the previously reported drug binding sites (drug site I and II) and putative binding site III revealed that binding site III showed excellent binding profiles and could be a target for future research related to BSA-drug binding.

Lima, CDL, Coelho H, Gimeno A, Trovão F, Diniz A, Dias JS, Jiménez-Barbero J, Corzana F, Carvalho AL, Cabrita EJ, Marcelo F.  2021.  Structural insights into the molecular recognition mechanism of the cancer and pathogenic epitope, LacdiNAc by immune-related lectins, 2021. Chemistry – A European JournalChemistry – A European Journal. n/a(n/a): John Wiley & Sons, Ltd AbstractWebsite

Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we disclosed the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAc?1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Gal?1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions is observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins. The new structural clues reported herein are fundamental for the chemical design of mimetics targeting hGal-3/hMGL recognition process.

2018
Santarsia, S, Grosso AS, Trovão F, Jiménez-Barbero J, Carvalho AL, Nativi C, Marcelo F.  2018.  Molecular recognition of a Thomsen-Friedenreich antigen mimetic targeting human galectin-3, 2018. ChemMedChem. Aug 9. doi: 10.1002/cmdc.201800525. [Epub ahead of print](ja): Wiley-Blackwell AbstractWebsite

Overexpression of the Thomsen-Friedenreich (TF) antigen in cell membrane proteins occurs in 90% of adenocarcinomas. Additionally, the binding of the TF-antigen to human galectin-3 (Gal-3), also frequently overexpressed in malignancy, promotes cancer progression and metastasis. In this context, structures that interfere with this specific interaction display the potential to prevent cancer metastasis. Herein, a multidisciplinary approach, combining the optimized synthesis of a TF-antigen mimetic with NMR, X-ray crystallography methods and isothermal titration calorimetry assays has been employed to unravel the molecular structural details that govern the Gal-3/TF-mimetic interaction. The TF-mimetic presents a binding affinity for Gal-3 similar to the TF-natural antigen and retains the binding epitope and the bioactive conformation observed for the native antigen. Furthermore, from a thermodynamic perspective a decrease in the enthalpic contribution was observed for the Gal-3/TF-mimetic complex, however this behaviour is compensated by a favourable entropy gain. From a structural perspective, these results establish our TF-mimetic as a scaffold to design multivalent solutions to potentially interfere with Gal-3 aberrant interactions and likely be used to hamper Gal-3-mediated cancer cells adhesion and metastasis.

2017
Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

Polino, M, Carvalho AL, Juknaitė L, Portugal CAM, Coelhoso IM, Romão MJ, Crespo JG.  2017.  Ion-Exchange Membranes for Stable Derivatization of Protein Crystals, 2017. Crystal Growth & DesignCrystal Growth & Design. : American Chemical Society AbstractWebsite
n/a
Kowacz, M, Marchel M, Juknaité L, Esperança JMSS, Romão MJ, Carvalho AL, Rebelo LPN.  2017.  Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly. Journal of Crystal Growth. 457:362-368. AbstractWebsite

Abstract We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of İR\} light on the structuring of protein interfacial water. Our results indicate that the İR\} radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by İR\} light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of İR\} radiation may have important implications for biological and bio-inspired systems.

2015
Kowacz, M, Marchel M, Juknaite L, Esperanca J, Romao MJ, Carvalho AL, Rebelo LPN.  2015.  Ionic-Liquid-Functionalized Mineral Particles for Protein Crystallization. Crystal Growth & Design. 15:2994-3003., Number 6 AbstractWebsite

Nucleation is a critical step determining the outcome of the entire crystallization process. Finding an effective nucleant for protein crystallization is of utmost importance for structural biology. The latter relies on good-quality crystals to solve the three-dimensional structures of macromolecules. In this study we show that crystalline barium sulfate (BaSO4) with an etched and/or ionic liquid (IL)-functionalized surface (1) can induce protein nucleation at concentrations well below the concentration needed to promote crystal growth under control conditions, (2) can shorten the nucleation time, (3) can increase the growth rate, and finally (4) may help to improve the protein crystal morphology. These effects were shown for lysozyme, RNase A, trypsin, proteinase K, myoglobin, and hemoglobin. Therefore, the use of BaSO4 particles enables us to reduce the amount of protein in crystallization trials and increases the chance of obtaining protein crystals of the desired quality. In the context of the underlying mechanism, it is shown that the protein-solid contact formation is governed by the interaction of the polar compartments of the biomacromolecule with the support. The tendency of a protein to concentrate near the solid surface is enhanced by both the hydrophobicity of the protein and that of the surface (tuned by the functionalizing IL). These mechanisms of interaction of biomacromolecules with inorganic hydrophilic solids correspond to the principles of amphiphilic IL-mineral interactions.

2013
Mehtab, S, Goncalves G, Roy S, Tomaz AI, Santos-Silva T, Santos MFA, Romao MJ, Jakusch T, Kiss T, Pessoa JC.  2013.  Interaction of vanadium(IV) with human serum apo-transferrin. Journal of Inorganic Biochemistry. 121:187-195. AbstractWebsite
n/a
2008
Chaves, S, Gil M, Canario S, Jelic R, Romao MJ, Trincao J, Herdtweck E, Sousa J, Diniz C, Fresco P, Santos AM.  2008.  Biologically relevant O,S-donor compounds. Synthesis, molybdenum complexation and xanthine oxidase inhibition. Dalton Transactions. :1773-1782., Number 13 AbstractWebsite
n/a
loading