Publications

Export 39 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Glatigny, A, Hof P, Romao MJ, Huber R, Scazzocchio C.  1998.  Altered specificity mutations define residues essential for substrate positioning in xanthine dehydrogenase. Journal of Molecular Biology. 278:431-438., Number 2 AbstractWebsite
n/a
Duarte, RO, Archer M, Dias JM, Bursakov S, Huber R, Moura I, Romao MJ, Moura JJG.  2000.  Biochemical/spectroscopic characterization and preliminary X-ray analysis of a new aldehyde oxidoreductase isolated from Desulfovibrio desulfuricans ATCC 27774. Biochemical and Biophysical Research Communications. 268:745-749., Number 3 AbstractWebsite
n/a
Chaves, S, Gil M, Canario S, Jelic R, Romao MJ, Trincao J, Herdtweck E, Sousa J, Diniz C, Fresco P, Santos AM.  2008.  Biologically relevant O,S-donor compounds. Synthesis, molybdenum complexation and xanthine oxidase inhibition. Dalton Transactions. :1773-1782., Number 13 AbstractWebsite
n/a
Mahro, M, Coelho C, Trincao J, Rodrigues D, Terao M, Garattini E, Saggu M, Lendzian F, Hildebrandt P, Romao MJ, Leimkuehler S.  2011.  Characterization and Crystallization of Mouse Aldehyde Oxidase 3: From Mouse Liver to Escherichia coli Heterologous Protein Expression. Drug Metabolism and Disposition. 39:1939-1945., Number 10 AbstractWebsite
n/a
Romao, MJ, Hubert R.  1997.  Crystal structure and mechanism of action of the xanthine oxidase-related aldehyde oxidoreductase from Desulfovibrio gigas. Biochemical Society Transactions. 25:755-757., Number 3 AbstractWebsite
n/a
Dias, JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJG, Moura I, Romao MJ.  1999.  Crystal structure of the first dissimilatory nitrate reductase at 1.9 angstrom solved by MAD methods. Structure with Folding & Design. 7:65-79., Number 1 AbstractWebsite
n/a
Romao, MJ, Turk D, GomisRuth FX, Huber R, Schumacher G, Mollering H, Russmann L.  1992.  CRYSTAL-STRUCTURE ANALYSIS, REFINEMENT AND ENZYMATIC-REACTION MECHANISM OF N-CARBAMOYLSARCOSINE AMIDOHYDROLASE FROM ARTHROBACTER SP AT 2.0-ANGSTROM RESOLUTION. Journal of Molecular Biology. 226:1111-1130., Number 4 AbstractWebsite
n/a
Archer, M, Huber R, Tavares P, Moura I, Moura JJG, Carrondo MA, Sieker LC, Legall J, Romao MJ.  1995.  CRYSTAL-STRUCTURE OF DESULFOREDOXIN FROM DESULFOVIBRIO-GIGAS DETERMINED AT 1.8 ANGSTROM RESOLUTION - A NOVEL NONHEME IRON PROTEIN-STRUCTURE. Journal of Molecular Biology. 251:690-702., Number 5 AbstractWebsite
n/a
Romao, MJ, Archer M, Moura I, Moura JJG, Legall J, Engh R, Schneider M, Hof P, Huber R.  1995.  CRYSTAL-STRUCTURE OF THE XANTHINE OXIDASE-RELATED ALDEHYDE OXIDOREDUCTASE FROM D-GIGAS. Science. 270:1170-1176., Number 5239 AbstractWebsite
n/a
Zajc, A, Romao MJ, Turk B, Huber R.  1996.  Crystallographic and fluorescence studies of ligand binding to N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. Journal of Molecular Biology. 263:269-283., Number 2 AbstractWebsite
n/a
Dias, JM, Than ME, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Moura JJG, Moura I, Romao MJ.  1999.  Crystallographic studies of a dissimilatory nitrate reductase and mechanistic implications. Journal of Inorganic Biochemistry. 74:113-113., Number 1-4 AbstractWebsite
n/a
Cunha, CA, Macieira S, Dias JM, Almeida G, Goncalves LL, Costa C, Lampreia J, Huber R, Moura JJG, Moura I, Romao MJ.  2003.  Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774 - The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). Journal of Biological Chemistry. 278:17455-17465., Number 19 AbstractWebsite
n/a
Frazao, C, Dias JM, Matias PM, Romao MJ, Carrondo MA, Hervas M, Navarro JA, Delarosa M, Sheldrick GM.  1995.  CYTOCHROME-C(6) FROM THE GREEN-ALGA MONORAPHIDIUM-BRAUNII - CRYSTALLIZATION AND PRELIMINARY DIFFRACTION STUDIES. Acta Crystallographica Section D-Biological Crystallography. 51:232-234. AbstractWebsite
n/a
Watson, C, Niks D, Hille R, Vieira M, Schoepp-Cothenet B, Marques AT, Romão MJ, Santos-Silva T, Santini JM.  2017.  Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1858:865-872., Number 10 AbstractWebsite

Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s−1 and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.

Laber, B, GomisRuth FX, Romao MJ, Huber R.  1992.  ESCHERICHIA-COLI DIHYDRODIPICOLINATE SYNTHASE - IDENTIFICATION OF THE ACTIVE-SITE AND CRYSTALLIZATION. Biochemical Journal. 288:691-695. AbstractWebsite
n/a
Rebelo, J, Macieira S, Dias JM, Huber R, Ascenso CS, Rusnak F, Moura JJG, Moura I, Romao MJ.  2000.  Gene sequence and crystal structure of the aldehyde oxidoreductase from Desulfovibrio desulfuricans ATCC 27774. Journal of Molecular Biology. 297:135-146., Number 1 AbstractWebsite
n/a
Raaijmakers, H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJG, Moura I, Romao MJ.  2002.  Gene sequence and the 1.8 angstrom crystal structure of the tungsten-containing formate dehydrogenase from Desulfolvibrio gigas. Structure. 10:1261-1272., Number 9 AbstractWebsite
n/a
Coelho, C, Gonzalez PJ, Trincao J, Carvalho AL, Najmudin S, Hettman T, Dieckman S, Moura JJG, Moura I, Romao MJ.  2007.  Heterodimeric nitrate reductase (NapAB) from Cupriavidus necator H16: purification, crystallization and preliminary X-ray analysis. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 63:516-519. AbstractWebsite
n/a
Almeida, MG, Macieira S, Goncalves LL, Huber R, Cunha CA, Romao MJ, Costa C, Lampreia J, Moura JJG, Moura I.  2003.  The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774 - Re-evaluation of the spectroscopic data and redox properties. European Journal of Biochemistry. 270:3904-3915., Number 19 AbstractWebsite
n/a
Thoenes, U, Flores OL, Neves A, Devreese B, Van Beeumen JJ, Huber R, Romao MJ, Legall J, Moura JJG, Rodriguespousada C.  1994.  MOLECULAR-CLONING AND SEQUENCE-ANALYSIS OF THE GENE OF THE MOLYBDENUM-CONTAINING ALDEHYDE OXIDOREDUCTASE OF DESULFOVIBRIO-GIGAS - THE DEDUCED AMINO-ACID-SEQUENCE SHOWS SIMILARITY TO XANTHINE DEHYDROGENASE. European Journal of Biochemistry. 220:901-910., Number 3 AbstractWebsite
n/a
Hettmann, T, Siddiqui RA, Frey C, Santos-Silva T, Romao MJ, Diekmann S.  2004.  Mutagenesis study on amino acids around the molybdenum centre of the periplasmic nitrate reductase from Ralstonia eutropha. Biochemical and Biophysical Research Communications. 320:1211-1219., Number 4 AbstractWebsite
n/a
Hettmann, T, Siddiqui RA, van Langen J, Frey C, Romao MJ, Diekmann S.  2003.  Mutagenesis study on the role of a lysine residue highly conserved in formate dehydrogenases and periplasmic nitrate reductases. Biochemical and Biophysical Research Communications. 310:40-47., Number 1 AbstractWebsite
n/a
Foti, A, Hartmann T, Coelho C, Santos-Silva T, Romão MJ, Leimkühler S.  2016.  Optimization of the Expression of Human Aldehyde Oxidase for Investigations of Single-Nucleotide Polymorphisms. Drug Metabolism and Disposition. 44:1277–1285., Number 8: American Society for Pharmacology and Experimental Therapeutics AbstractWebsite

Aldehyde oxidase (AOX1) is an enzyme with broad substrate specificity, catalyzing the oxidation of a wide range of endogenous and exogenous aldehydes as well as N-heterocyclic aromatic compounds. In humans, the enzyme’s role in phase I drug metabolism has been established and its importance is now emerging. However, the true physiologic function of AOX1 in mammals is still unknown. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified in human AOX1. SNPs are a major source of interindividual variability in the human population, and SNP-based amino acid exchanges in AOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. For the reliable analysis of the effect of amino acid exchanges in human proteins, the existence of reproducible expression systems for the production of active protein in ample amounts for kinetic, spectroscopic, and crystallographic studies is required. In our study we report an optimized expression system for hAOX1 in Escherichia coli using a codon-optimized construct. The codon-optimization resulted in an up to 15-fold increase of protein production and a simplified purification procedure. The optimized expression system was used to study three SNPs that result in amino acid changes C44W, G1269R, and S1271L. In addition, the crystal structure of the S1271L SNP was solved. We demonstrate that the recombinant enzyme can be used for future studies to exploit the role of AOX in drug metabolism, and for the identification and synthesis of new drugs targeting AOX when combined with crystallographic and modeling studies.

Voityuk, AA, Albert K, Kostlmeier S, Nasluzov VA, Neyman KM, Hof P, Huber R, Romao MJ, Rosch N.  1997.  Prediction of alternative structures of the molybdenum site in the xanthine oxidase-related aldehyde oxide reductase. Journal of the American Chemical Society. 119:3159-3160., Number 13 AbstractWebsite
n/a