Publications

Export 64 results:
Sort by: Author Title [ Type  (Asc)] Year
Book Chapter
Bras, JLA, Carvalho AL, Viegas A, Najmudin S, Alves VD, Prates JAM, Ferreira LMA, Romao MJ, Gilbert HJ, Fontes CMGA.  2012.  ESCHERICHIA COLI EXPRESSION, PURIFICATION, CRYSTALLIZATION, AND STRUCTURE DETERMINATION OF BACTERIAL COHESIN-DOCKERIN COMPLEXES. Cellulases. 510(Gilbert, H. J., Ed.).:395-415. Abstract
n/a
Journal Article
Oliveira, AR, Mota C, Vilela-Alves G, Manuel RR, Pedrosa N, Fourmond V, Klymanska K, Léger C, Guigliarelli B, Romão MJ, Cardoso Pereira IA.  2024.  An allosteric redox switch involved in oxygen protection in a CO2 reductase, 2024. 20(1):111-119. AbstractWebsite

Metal-dependent formate dehydrogenases reduce CO2 with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O2 exposure.

Bule, P, Alves VD, Israeli-Ruimy V, Carvalho AL, Ferreira LMA, Smith SP, Gilbert HJ, Najmudin S, Bayer EA, Fontes CMGA.  2017.  Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes, 2017. Scientific Reports. 7:759. AbstractWebsite

Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens’ cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.

Santos, MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Pessoa JC.  2022.  Binding of VIVO2+, VIVOL, VIVOL2 and VVO2L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications, 2022. Chemistry – A European JournalChemistry – A European Journal. 28(40):e202200105.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIVO2+ and VIVOL2+, where L=2,2?-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIVO(picolinato)2 and VVO2(phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin?VVO2(phen) and trypsin?VIVO(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium?protein interactions.

Chaves, S, Gil M, Canario S, Jelic R, Romao MJ, Trincao J, Herdtweck E, Sousa J, Diniz C, Fresco P, Santos AM.  2008.  Biologically relevant O,S-donor compounds. Synthesis, molybdenum complexation and xanthine oxidase inhibition. Dalton Transactions. :1773-1782., Number 13 AbstractWebsite
n/a
Ferreira, P, Cerqueira NSMFA, Fernandes PA, Romão MJ, Ramos MJ.  2020.  Catalytic Mechanism of Human Aldehyde Oxidase, 2020. ACS CatalysisACS Catalysis. 10(16):9276-9286.: American Chemical Society AbstractWebsite

The mechanism of oxidation of N-heterocycle phthalazine to phthalazin-1(2H)-one and its associated free energy profile, catalyzed by human aldehyde oxidase (hAOX1), was studied in atomistic detail using QM/MM methodologies. The studied reaction was found to involve three sequential steps: (i) protonation of the substrate’s N2 atom by Lys893, (ii) nucleophilic attack of the hydroxyl group of the molybdenum cofactor (Moco) to the substrate, and (iii) hydride transfer from the substrate to the sulfur atom of the Moco. The free energy profile that was calculated revealed that the rate-limiting step corresponds to hydride transfer. It was also found that Lys893 plays a relevant role in the reaction, being important not only for the anchorage of the substrate close to the Moco, but also in the catalytic reaction. The variations of the oxidation state of the molybdenum ion throughout the catalytic cycle were examined too. We found out that during the displacement of the products away from the Moco, the transfer of electrons from the catalytic site to the FAD site was proton-coupled. As a consequence, the most favorable and fastest pathway for the enzyme to complete its catalytic cycle was that with MoV and a deprotonated SH ligand of the Moco with the FAD molecule converted to its semiquinone form, FADH•.The mechanism of oxidation of N-heterocycle phthalazine to phthalazin-1(2H)-one and its associated free energy profile, catalyzed by human aldehyde oxidase (hAOX1), was studied in atomistic detail using QM/MM methodologies. The studied reaction was found to involve three sequential steps: (i) protonation of the substrate’s N2 atom by Lys893, (ii) nucleophilic attack of the hydroxyl group of the molybdenum cofactor (Moco) to the substrate, and (iii) hydride transfer from the substrate to the sulfur atom of the Moco. The free energy profile that was calculated revealed that the rate-limiting step corresponds to hydride transfer. It was also found that Lys893 plays a relevant role in the reaction, being important not only for the anchorage of the substrate close to the Moco, but also in the catalytic reaction. The variations of the oxidation state of the molybdenum ion throughout the catalytic cycle were examined too. We found out that during the displacement of the products away from the Moco, the transfer of electrons from the catalytic site to the FAD site was proton-coupled. As a consequence, the most favorable and fastest pathway for the enzyme to complete its catalytic cycle was that with MoV and a deprotonated SH ligand of the Moco with the FAD molecule converted to its semiquinone form, FADH•.

Carvalho, AL, Dias FMV, Prates JAM, Nagy T, Gilbert HJ, Davies GJ, Ferreira LMA, Romao MJ, Fontes C.  2003.  Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proceedings of the National Academy of Sciences of the United States of America. 100:13809-13814., Number 24 AbstractWebsite
n/a
Gomes, AS, Trovão F, Andrade Pinheiro B, Freire F, Gomes S, Oliveira C, Domingues L, Romão MJ, Saraiva L, Carvalho AL.  2018.  The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. International Journal of Molecular Sciences. 19, Number 4}, ARTICLE NUMBER = {1184 AbstractWebsite

The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For these reasons, the reactivation of p53 function is regarded as a promising strategy to halt cancer. In the present work, the recombinant mutant p53R280K DNA binding domain (DBD) was produced for the first time, and its crystal structure was determined in the absence of DNA to a resolution of 2.0 Å. The solved structure contains four molecules in the asymmetric unit, four zinc(II) ions, and 336 water molecules. The structure was compared with the wild-type p53 DBD structure, isolated and in complex with DNA. These comparisons contributed to a deeper understanding of the mutant p53R280K structure, as well as the loss of DNA binding related to halted transcriptional activity. The structural information derived may also contribute to the rational design of mutant p53 reactivating molecules with potential application in cancer treatment.

Frazao, C, Dias JM, Matias PM, Romao MJ, Carrondo MA, Hervas M, Navarro JA, Delarosa M, Sheldrick GM.  1995.  CYTOCHROME-C(6) FROM THE GREEN-ALGA MONORAPHIDIUM-BRAUNII - CRYSTALLIZATION AND PRELIMINARY DIFFRACTION STUDIES. Acta Crystallographica Section D-Biological Crystallography. 51:232-234. AbstractWebsite
n/a
Palma, AS, Liu Y, Zhang Y, Zhang H, Luis AS, Carvalho AL, Gilbert HJ, Boraston A, Fontes CMGA, Chai W, Ten F.  2012.  Designer-oligosaccharide microarrays to decipher ligands in mammalian and prokaryotic glucan-recognition systems. Glycobiology. 22:1612-1613., Number 11 AbstractWebsite
n/a
Brás, JLA, Pinheiro BA, Cameron K, Cuskin F, Viegas A, Najmudin S, Bule P, Pires VMR, Romão MJ, Bayer EA, Spencer HL, Smith S, Gilbert HJ, Alves VD, Carvalho AL, Fontes CMGA.  2016.  Diverse specificity of cellulosome attachment to the bacterial cell surface, dec. Scientific Reports. 6:38292.: The Author(s) AbstractWebsite

During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.

Lopes, R, Raya-Barón Á, Robalo PM, Vinagreiro C, Barroso S, Romão MJ, Fernández I, Pereira MM, Royo B.  2021.  Donor Functionalized Iron(II) N-Heterocyclic Carbene Complexes in Transfer Hydrogenation Reactions. European Journal of Inorganic Chemistry. 2021:22-29., Number 1 AbstractWebsite

Two piano-stool iron(II) complexes bearing N-heterocyclic carbene ligands outfitted with acetamide- and amine-pendant arms [Cp*Fe(NHCR)(CO)I] {Cp* = η5-tetramethylcyclopentadienyl; R = CH2CONEt2 (3), (CH2)2NEt2 (4)}, have been prepared and fully characterized. Their catalytic activity in transfer hydrogenation (TH) of ketones using iPrOH as a hydrogen source and catalytic amounts of base (LiOtBu) has been explored, along with that of previously reported [CpFe(NHCR)(CO)I] {R = nBu (5), (CH2)2OH (6), Et (7), and (CH2)3OH (8)} complexes containing hydroxyl and nonfunctionalized alkyl arms. Complex 3 displayed the highest catalytic activity of the whole series 3–8, reaching a TOF50 value of 533 h–1. NMR monitoring of the stoichiometric reaction of 3 with LiOtBu, allowed the identification of a new species 3' containing a deprotonated amidate moiety, which has been fully characterized by 1H, 13C, and 15N NMR. Finally, a green protocol for the reduction of ketones through TH using glycerol as a hydrogen source, under microwave irradiation in the presence of catalytic amounts of 3 and base has been developed.

Duarte, M, Viegas A, Alves VD, Prates JAM, Ferreira LMA, Najmudin S, Cabrita EJ, Carvalho AL, Fontes CMGA, Bule P.  2021.  A dual cohesin–dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome. Journal of Biological Chemistry. 296:100552. AbstractWebsite

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin–dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin–dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.

Silva, JM, Cerofolini L, Carvalho AL, Ravera E, Fragai M, Parigi G, Macedo AL, Geraldes CFGC, Luchinat C.  2023.  Elucidating the concentration-dependent effects of thiocyanate binding to carbonic anhydrase, 2023. 244:112222. AbstractWebsite

Many proteins naturally carry metal centers, with a large share of them being in the active sites of several enzymes. Paramagnetic effects are a powerful source of structural information and, therefore, if the native metal is paramagnetic, or it can be functionally substituted with a paramagnetic one, paramagnetic effects can be used to study the metal sites, as well as the overall structure of the protein. One notable example is cobalt(II) substitution for zinc(II) in carbonic anhydrase. In this manuscript we investigate the effects of sodium thiocyanate on the chemical environment of the metal ion of the human carbonic anhydrase II. The electron paramagnetic resonance (EPR) titration of the cobalt(II) protein with thiocyanate shows that the EPR spectrum changes from A-type to C-type on passing from 1:1 to 1:1000-fold ligand excess. This indicates the occurrence of a change in the electronic structure, which may reflect a sizable change in the metal coordination environment in turn caused by a modification of the frozen solvent glass. However, paramagnetic nuclear magnetic resonance (NMR) data indicate that the metal coordination cage remains unperturbed even in 1:1000-fold ligand excess. This result proves that the C-type EPR spectrum observed at large ligand concentration should be ascribed to the low temperature at which EPR measurements are performed, which impacts on the structure of the protein when it is destabilized by a high concentration of a chaotropic agent.

Carvalho, AL, Dias FMV, Nagy T, Prates JAM, Proctor MR, Smith N, Bayer EA, Davies GJ, Ferreira LMA, Romao MJ, Fontes CMGA, Gilbert HJ.  2007.  Evidence for a dual binding mode of dockerin modules to cohesins. Proceedings of the National Academy of Sciences of the United States of America. 104:3089-3094., Number 9 AbstractWebsite
n/a
Carvalho, AL, Goyal A, Prates JAM, Bolam DN, Gilbert HJ, Pires VMR, Ferreira LMA, Planas A, Romao MJ, Fontes C.  2004.  The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. Journal of Biological Chemistry. 279:34785-34793., Number 33 AbstractWebsite
n/a
Ribeiro, T, Santos-Silva T, Alves VD, Dias FMV, Luis AS, Prates JAM, Ferreira LMA, Romao MJ, Fontes CMGA.  2010.  Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities. Biochimica Et Biophysica Acta-Proteins and Proteomics. 1804:2054-2062., Number 10 AbstractWebsite
n/a
Leisico, F, V. Vieira D, Figueiredo TA, Silva M, Cabrita EJ, Sobral RG, Ludovice AM, Trincão J, Romão MJ, de Lencastre H, Santos-Silva T.  2018.  First insights of peptidoglycan amidation in Gram-positive bacteria - the high-resolution crystal structure of Staphylococcus aureus glutamine amidotransferase GatD, 2018. Scientific Reports. 8(1):5313. AbstractWebsite

Gram-positive bacteria homeostasis and antibiotic resistance mechanisms are dependent on the intricate architecture of the cell wall, where amidated peptidoglycan plays an important role. The amidation reaction is carried out by the bi-enzymatic complex MurT-GatD, for which biochemical and structural information is very scarce. In this work, we report the first crystal structure of the glutamine amidotransferase member of this complex, GatD from Staphylococcus aureus, at 1.85 Å resolution. A glutamine molecule is found close to the active site funnel, hydrogen-bonded to the conserved R128. In vitro functional studies using 1H-NMR spectroscopy showed that S. aureus MurT-GatD complex has glutaminase activity even in the absence of lipid II, the MurT substrate. In addition, we produced R128A, C94A and H189A mutants, which were totally inactive for glutamine deamidation, revealing their essential role in substrate sequestration and catalytic reaction. GatD from S. aureus and other pathogenic bacteria share high identity to enzymes involved in cobalamin biosynthesis, which can be grouped in a new sub-family of glutamine amidotransferases. Given the ubiquitous presence of GatD, these results provide significant insights into the molecular basis of the so far undisclosed amidation mechanism, contributing to the development of alternative therapeutics to fight infections.

Bule, P, Pires VMR, Alves VD, Carvalho AL, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Noach I, Bayer EA, Najmudin S, Fontes CMGA.  2018.  Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction, 2018. Scientific Reports. 8(1):6987. AbstractWebsite

Cellulosomes are highly sophisticated molecular nanomachines that participate in the deconstruction of complex polysaccharides, notably cellulose and hemicellulose. Cellulosomal assembly is orchestrated by the interaction of enzyme-borne dockerin (Doc) modules to tandem cohesin (Coh) modules of a non-catalytic primary scaffoldin. In some cases, as exemplified by the cellulosome of the major cellulolytic ruminal bacterium Ruminococcus flavefaciens, primary scaffoldins bind to adaptor scaffoldins that further interact with the cell surface via anchoring scaffoldins, thereby increasing cellulosome complexity. Here we elucidate the structure of the unique Doc of R. flavefaciens FD-1 primary scaffoldin ScaA, bound to Coh 5 of the adaptor scaffoldin ScaB. The RfCohScaB5-DocScaA complex has an elliptical architecture similar to previously described complexes from a variety of ecological niches. ScaA Doc presents a single-binding mode, analogous to that described for the other two Coh-Doc specificities required for cellulosome assembly in R. flavefaciens. The exclusive reliance on a single-mode of Coh recognition contrasts with the majority of cellulosomes from other bacterial species described to date, where Docs contain two similar Coh-binding interfaces promoting a dual-binding mode. The discrete Coh-Doc interactions observed in ruminal cellulosomes suggest an adaptation to the exquisite properties of the rumen environment.

Mota, C, Esmaeeli M, Coelho C, Santos-Silva T, Wolff M, Foti A, Leimkühler S, Romão MJ.  2019.  Human aldehyde oxidase (hAOX1): structure determination of the Moco-free form of the natural variant G1269R and biophysical studies of single nucleotide polymorphisms. FEBS Open Bio. 9:925-934., Number 5 AbstractWebsite

Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug-metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug-metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)-free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild-type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 °C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. Enzymes Aldehyde oxidase (EC1.2.3.1); xanthine dehydrogenase (EC1.17.1.4); xanthine oxidase (EC1.1.3.2). Databases Structural data are available in the Protein Data Bank under the accession number 6Q6Q.

Fv, V, Violante S, Gomes C, Carvalho AL, Romao MJ, Gaspar MM, Cruz MEM, Soveral G, Wanders RJ, Leandro P, de Almeida TV.  2007.  The human carnitine acylcarnitine translocase (hCACT): Strategies for its heterologous expression, purification and crystallization. Journal of Inherited Metabolic Disease. 30:53-53. AbstractWebsite
n/a
Fernandes, AR, Mendonça-Martins I, Santos MFA, Raposo LR, Mendes R, Marques J, Romão CC, Romão MJ, Santos-Silva T, Baptista PV.  2020.  Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, 2020. ACS Biomaterials Science & EngineeringACS Biomaterials Science & Engineering. 6(2):1090-1101.: American Chemical Society AbstractWebsite

CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles–CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles–CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.

Carvalho, AL, Pires VMR, Gloster TM, Turkenburg JP, Prates JAM, Ferreira LMA, Romao MJ, Davies GJ, Fontes C, Gilbert HJ.  2005.  Insights into the structural determinants of cohesin dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. Journal of Molecular Biology. 349:909-915., Number 5 AbstractWebsite
n/a
Cerqueira, NMFSA, Coelho C, Bras NF, Fernandes PA, Garattini E, Terao M, Romao MJ, Ramos MJ.  2015.  Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. Journal of Biological Inorganic Chemistry. 20:209-217., Number 2 AbstractWebsite

In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.

Santos-Silva, T, Ferroni F, Thapper A, Marangon J, Gonzalez PJ, Rizzi AC, Moura I, Moura JJG, Romao MJ, Brondino CD.  2009.  Kinetic, Structural, and EPR Studies Reveal That Aldehyde Oxidoreductase from Desulfovibrio gigas Does Not Need a Sulfido Ligand for Catalysis and Give Evidence for a Direct Mo-C Interaction in a Biological System. Journal of the American Chemical Society. 131:7990-7998., Number 23 AbstractWebsite
n/a