Publications

Export 80 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Correia, HD, Marangon J, Brondino CD, Moura JJG, Romao MJ, Gonzalez PJ, Santos-Silva T.  2015.  Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction. Journal of Biological Inorganic Chemistry. 20:219-229., Number 2 AbstractWebsite

Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using C-13-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe(425) and Tyr(535) are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.

Seixas, JD, Santos MFA, Mukhopadhyay A, Coelho AC, Reis PM, Veiros LF, Marques AR, Penacho N, Goncalves AML, Romao MJ, Bernardes GJL, Santos-Silva T, Romao CC.  2015.  A contribution to the rational design of Ru(CO)(3)Cl2L complexes for in vivo delivery of CO. Dalton Transactions. 44:5058-5075., Number 11 AbstractWebsite

A few ruthenium based metal carbonyl complexes, e.g. CORM-2 and CORM-3, have therapeutic activity attributed to their ability to deliver CO to biological targets. In this work, a series of related complexes with the formula [Ru(CO)(3)Cl2L] (L = DMSO (3), L-H3CSO(CH2)(2)CH(NH2)CO2H) (6a); D,L-H3CSO(CH2)(2)CH-(NH2)CO2H (6b); 3-NC5H4(CH2)(2)SO3.Na (7); 4-NC5H4(CH2)(2)SO3Na (8); PTA (9); DAPTA (10); H3CS-(CH2)(2)CH(OH) CO2H (11); CNCMe2CO2Me (12); CNCMeEtCO2Me (13); CN(c-C3H4)CO2Et) (14)) were designed, synthesized and studied. The effects of L on their stability, CO release profile, cytotoxicity and anti-inflammatory properties are described. The stability in aqueous solution depends on the nature of L as shown using HPLC and LC-MS studies. The isocyanide derivatives are the least stable complexes, and the S-bound methionine oxide derivative is the more stable one. The complexes do not release CO gas to the headspace, but release CO2 instead. X-ray diffraction of crystals of the model protein Hen Egg White Lysozyme soaked with 6b (4UWN) and 8 (4UWV) shows the addition of Ru-II(CO)(H2O)(4) at the His15 binding site. Soakings with 7 (4UWU) produced the metallacarboxylate [Ru(COOH)(CO)(H2O)(3)](+) bound to the His15 site. The aqueous chemistry of these complexes is governed by the water-gas shift reaction initiated with the nucleophilic attack of HO- on coordinated CO. DFT calculations show this addition to be essentially barrierless. The complexes have low cytotoxicity and low hemolytic indices. Following i.v. administration of CORM-3, the in vivo bio-distribution of CO differs from that obtained with CO inhalation or with heme oxygenase stimulation. A mechanism for CO transport and delivery from these complexes is proposed.

Cerqueira, NMFSA, Coelho C, Bras NF, Fernandes PA, Garattini E, Terao M, Romao MJ, Ramos MJ.  2015.  Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. Journal of Biological Inorganic Chemistry. 20:209-217., Number 2 AbstractWebsite

In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.

2014
Ribeiro, D, Kulakova A, Quaresma P, Pereira E, Bonifacio C, Romao MJ, Franco R, Carvalho AL.  2014.  Use of Gold Nanoparticles as Additives in Protein Crystallization. Crystal Growth & Design. 14:222-227., Number 1 AbstractWebsite

Gold nanoparticles (AuNPs) exhibit unique properties that have made them a very attractive material for application in biological assays. Given the potentially interesting interactions between AuNPs and biological macromolecules, we investigated AuNPs-induced protein crystal growth. Differently functionalized AuNPs were tested as additives in cocrystallization studies with model proteins (hen egg white lysozyme (HEWL), ribonuclease A (RNase A), and proteinase K) as well as with case studies where there were problems in obtaining well-diffracting crystals. Trials were performed considering different crystallization drawbacks, from total absence of crystals to improvement of crystal morphology, size, twinning, and number of crystals per drop. Improvement of some of these factors was observed in the cases of HEWL, RNase A, phenylalanine hydroxylase (PAR), myoglobin, native aldehyde oxidase (AOH), and human albumin. In these proteins, the presence of the AuNPs promoted an increase in the size and/or better crystal morphology. From the systematic trials and subsequent observations, it can be concluded that the introduction of AuNPs should definitely be considered in crystal optimization trials to improve previously determined crystallization conditions.

2013
Mukhopadhyay, A, Bursakov SA, Ramos JL, Wittich RM, Kladova AV, Romao MJ, van Dillewijn P, Carvalho AL.  2013.  Determinants of selective group reduction in the TNT-bound xenobiotic reductase B from P. putida. European Biophysics Journal with Biophysics Letters. 42:S179-S179. AbstractWebsite
n/a
Mahro, M, Bras NF, Cerqueira NMFSA, Teutloff C, Coelho C, Romao MJ, Leimkuehler S.  2013.  Identification of Crucial Amino Acids in Mouse Aldehyde Oxidase 3 That Determine Substrate Specificity. Plos One. 8, Number 12 AbstractWebsite
n/a
Marangon, J, Correia HD, Brondino CD, Moura JJG, Romao MJ, Gonzalez PJ, Santos-Silva T.  2013.  Kinetic and Structural Studies of Aldehyde Oxidoreductase from Desulfovibrio gigas Reveal a Dithiolene-Based Chemistry for Enzyme Activation and Inhibition by H2O2. Plos One. 8, Number 12 AbstractWebsite
n/a
Verma, AK, Goyal A, Freire F, Bule P, Venditto I, Bras JLA, Santos H, Cardoso V, Bonifacio C, Thompson A, Romao MJ, Prates JAM, Ferreira LMA, Fontes CMGA, Najmudin S.  2013.  Overexpression, crystallization and preliminary X-ray crystallographic analysis of glucuronoxylan xylanohydrolase (Xyn30A) from Clostridium thermocellum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 69:1440-1442. AbstractWebsite
n/a
2012
Palma, AS, Liu Y, Zhang Y, Zhang H, Luis AS, Carvalho AL, Gilbert HJ, Boraston A, Fontes CMGA, Chai W, Ten F.  2012.  Designer-oligosaccharide microarrays to decipher ligands in mammalian and prokaryotic glucan-recognition systems. Glycobiology. 22:1612-1613., Number 11 AbstractWebsite
n/a
Bras, JLA, Carvalho AL, Viegas A, Najmudin S, Alves VD, Prates JAM, Ferreira LMA, Romao MJ, Gilbert HJ, Fontes CMGA.  2012.  ESCHERICHIA COLI EXPRESSION, PURIFICATION, CRYSTALLIZATION, AND STRUCTURE DETERMINATION OF BACTERIAL COHESIN-DOCKERIN COMPLEXES. Cellulases. 510(Gilbert, H. J., Ed.).:395-415. Abstract
n/a
Bras, JLA, Alves VD, Carvalho AL, Najmudin S, Prates JAM, Ferreira LMA, Bolam DN, Romao MJ, Gilbert HJ, Fontes CMGA.  2012.  Novel Clostridium thermocellum Type I Cohesin-Dockerin Complexes Reveal a Single Binding Mode. Journal of Biological Chemistry. 287:44394-44405., Number 53 AbstractWebsite
n/a
2011
Santos-Silva, T, Mukhopadhyay A, Seixas JD, Bernardes GJL, Romao CC, Romao MJ.  2011.  CORM-3 Reactivity toward Proteins: The Crystal Structure of a Ru(II) Dicarbonyl-Lysozyme Complex. Journal of the American Chemical Society. 133:1192-1195., Number 5 AbstractWebsite
n/a
Mukhopadhyay, A, Kladova AV, Bursakov SA, Gavel YO, Calvete JJ, Shnyrov VL, Moura I, Moura JJG, Romao MJ, Trincao J.  2011.  Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria. Journal of Biological Inorganic Chemistry. 16:51-61., Number 1 AbstractWebsite
n/a
Bras, JLA, Correia MAS, Romao MJ, Prates JAM, Fontes CMGA, Najmudin S.  2011.  Purification, crystallization and preliminary X-ray characterization of the pentamodular arabinoxylanase CtXyl5A from Clostridium thermocellum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 67:833-836. AbstractWebsite
n/a
Bras, JLA, Cartmell A, Carvalho ALM, Verze G, Bayer EA, Vazana Y, Correia MAS, Prates JAM, Ratnaparkhe S, Boraston AB, Romao MJ, Fontes CMGA, Gilbert HJ.  2011.  Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proceedings of the National Academy of Sciences of the United States of America. 108:5237-5242., Number 13 AbstractWebsite
n/a
Santos-Silva, T, Mukhopadhyay A, Seixas JD, Bernardes GJL, Romao CC, Romao MJ.  2011.  Towards Improved Therapeutic CORMs: Understanding the Reactivity of CORM-3 with Proteins. Current Medicinal Chemistry. 18:3361-3366., Number 22 AbstractWebsite
n/a
2009
Kladova, AV, Gavel YO, Mukhopaadhyay A, Boer DR, Teixeira S, Shnyrov VL, Moura I, Moura JJG, Romao MJ, Trincao J, Bursakov SA.  2009.  Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65:926-929. AbstractWebsite
n/a
Najmudin, S, Bonifacio C, Duarte AG, Pualeta SR, Moura I, Moura JJG, Romao MJ.  2009.  Crystallization and crystallographic analysis of the apo form of the orange protein (ORP) from Desulfovibrio gigas. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65:730-732. AbstractWebsite
n/a
Najmudin, S, Bonifacio C, Duarte AG, Pauleta SR, Moura I, Moura JJG, Romao MJ.  2009.  Crystallization and crystallographic analysis of the apo form of the orange protein (ORP) from Desulfovibrio gigas. (vol F65, pg 730, 2009). Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65:856-856. AbstractWebsite
n/a
Cerqueira, NMFSA, Gonzalez PJ, Brondino CD, Romao MJ, Romao CC, Moura I, Moura JJG.  2009.  The Effect of the Sixth Sulfur Ligand in the Catalytic Mechanism of Periplasmic Nitrate Reductase. Journal of Computational Chemistry. 30:2466-2484., Number 15 AbstractWebsite
n/a
Santos-Silva, T, Ferroni F, Thapper A, Marangon J, Gonzalez PJ, Rizzi AC, Moura I, Moura JJG, Romao MJ, Brondino CD.  2009.  Kinetic, Structural, and EPR Studies Reveal That Aldehyde Oxidoreductase from Desulfovibrio gigas Does Not Need a Sulfido Ligand for Catalysis and Give Evidence for a Direct Mo-C Interaction in a Biological System. Journal of the American Chemical Society. 131:7990-7998., Number 23 AbstractWebsite
n/a
2008
Vidinha, P, Lourenco NMT, Pinheiro C, Bras AR, Carvalho T, Santos-Silva T, Mukhopadhyay A, Romao MJ, Parola J, Dionisio M, Cabral JMS, Afonso CAM, Barreiros S.  2008.  Ion jelly: a tailor-made conducting material for smart electrochemical devices. Chemical Communications. :5842-5844., Number 44 AbstractWebsite
n/a
Viegas, A, Bras NF, Cerqueira NMFSA, Fernandes PA, Prates JAM, Fontes CMGA, Bruix M, Romao MJ, Carvalho AL, Ramos MJ, Macedo AL, Cabrita EJ.  2008.  Molecular determinants of ligand specificity in family 11 carbohydrate binding modules - an NMR, X-ray crystallography and computational chemistry approach. Febs Journal. 275:2524-2535., Number 10 AbstractWebsite
n/a
Najmudin, S, Gonzalez PJ, Trincao J, Coelho C, Mukhopadhyay A, Cerqueira NMFSA, Romao CC, Moura I, Moura JJG, Brondino CD, Romao MJ.  2008.  Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. Journal of Biological Inorganic Chemistry. 13:737-753., Number 5 AbstractWebsite
n/a
Gavel, OY, Kladova AV, Bursakov SA, Dias JM, Texeira S, Shnyrov VL, Moura JJG, Moura I, Romao MJ, Trincao J.  2008.  Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 64:593-595. AbstractWebsite
n/a
loading