Publications

Export 46 results:
Sort by: Author [ Title  (Desc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
X
Najmudin, S, Guerreiro C, Carvalho AL, Prates JAM, Correia MAS, Alves VD, Ferreira LMA, Romao MJ, Gilbert HJ, Bolam DN, Fontes C.  2006.  Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. Journal of Biological Chemistry. 281:8815-8828., Number 13 AbstractWebsite
n/a
T
Raaijmakers, H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJG, Romao MJ.  2001.  Tungsten-containing formats dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallography. Journal of Biological Inorganic Chemistry. 6:398-404., Number 4 AbstractWebsite
n/a
Hussain, A, Semeano ATS, Palma SICJ, Pina AS, Almeida J, Medrado BF, Pádua ACCS, Carvalho AL, Dionísio M, Li RWC, Gamboa H, Ulijn RV, Gruber J, Roque ACA.  2017.  Tunable Gas Sensing Gels by Cooperative Assembly. Advanced Functional Materials. 27:1700803–n/a., Number 27 AbstractWebsite

The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels' structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli.

Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

Esteves, C, Palma SICJ, Costa HMA, Alves C, Santos GMC, Ramou E, Carvalho AL, Alves V, Roque ACA.  2022.  Tackling Humidity with Designer Ionic Liquid-Based Gas Sensing Soft Materials. Advanced Materials. 34:2107205., Number 8 AbstractWebsite

Abstract Relative humidity is simultaneously a sensing target and a contaminant in gas and volatile organic compound (VOC) sensing systems, where strategies to control humidity interference are required. An unmet challenge is the creation of gas-sensitive materials where the response to humidity is controlled by the material itself. Here, humidity effects are controlled through the design of gelatin formulations in ionic liquids without and with liquid crystals as electrical and optical sensors, respectively. In this design, the anions [DCA]− and [Cl]− of room temperature ionic liquids from the 1-butyl-3-methylimidazolium family tailor the response to humidity and, subsequently, sensing of VOCs in dry and humid conditions. Due to the combined effect of the materials formulations and sensing mechanisms, changing the anion from [DCA]− to the much more hygroscopic [Cl]−, leads to stronger electrical responses and much weaker optical responses to humidity. Thus, either humidity sensors or humidity-tolerant VOC sensors that do not require sample preconditioning or signal processing to correct humidity impact are obtained. With the wide spread of 3D- and 4D-printing and intelligent devices, the monitoring and tuning of humidity in sustainable biobased materials offers excellent opportunities in e-nose sensing arrays and wearable devices compatible with operation at room conditions.

S
Branco, PS, Peixoto D, Figueiredo M, Malta G, Roma-Rodrigues C, Batista PV, Fernandes AR, Barroso S, Carvalho AL, Afonso CAM, Ferreira LM.  2018.  Synthesis, cytotoxicity evaluation in human cell lines and in vitro DNA interaction of a hetero arylidene-9(10H)-anthrone. European Journal of Organic Chemistry. :n/a–n/a. AbstractWebsite

A new and never yet reported hetero arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally attributed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity (Kb = 2.0(± 0.20) x 105 M-1) which is 10x higher than that described for doxorubicin (Kb = 3.2 (±0.23) × 104 M-1). Furthermore, compound 4 quenches the fluorescence emission of GelRed-CT-DNA system with a quenching constant (KSV) of 3.3(±0.3) x 103 M-1 calculated by the Stern-Volmer equation.

Outis, M, Rosa V, Laia CAT, Lima JC, Barroso S, Carvalho AL, Calhorda MJ, Avilés T.  2020.  Synthesis, Crystal Structure, and DFT Study of Two New Dinuclear Copper(I) Complexes Bearing Ar-BIAN Ligands Functionalized with NO2 Groups. European Journal of Inorganic Chemistry. 2020:2900-2911., Number 30 AbstractWebsite

{Two new bis(aryl-imino)-acenaphthene, Ar-BIAN (Ar = 2

Santos-Silva, T, Trincao J, Carvalho AL, Bonifacio C, Auchere F, Moura I, Moura JJG, Romao MJ.  2005.  Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 61:967-970. AbstractWebsite
n/a
Romao, MJ, Barata BAS, Archer M, Lobeck K, Moura I, Carrondo MA, Legall J, Lottspeich F, Huber R, Moura JJG.  1993.  SUBUNIT COMPOSITION, CRYSTALLIZATION AND PRELIMINARY CRYSTALLOGRAPHIC STUDIES OF THE DESULFOVIBRIO-GIGAS ALDEHYDE OXIDOREDUCTASE CONTAINING MOLYBDENUM AND 2FE-2S CENTERS. European Journal of Biochemistry. 215:729-732., Number 3 AbstractWebsite
n/a
Voityuk, AA, Albert K, Romao MJ, Huber R, Rosch N.  1998.  Substrate oxidation in the active site of xanthine oxidase and related enzymes. A model density functional study. Inorganic Chemistry. 37:176-180., Number 2 AbstractWebsite
n/a
Duarte, M, Alves VD, Correia M, Caseiro C, Ferreira LMA, Romão MJ, Carvalho AL, Najmudin S, Bayer EA, Fontes CMGA, Bule P.  2023.  Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies, 2023. 224:55-67. AbstractWebsite

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.

Huber, R, Hof P, Duarte RO, Moura JJG, Moura I, Liu MY, Legall J, Hille R, Archer M, Romao MJ.  1996.  A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proceedings of the National Academy of Sciences of the United States of America. 93:8846-8851., Number 17 AbstractWebsite
n/a
Goncalves, LML, Cunha C, Almeida G, Macieira S, Costa C, Lampreia J, Romao MJ, Moura JJG, Moura I.  2001.  Structural studies on Desulfovibrio desulfuricans ATCC 27774 multiheme nitrite reductase - characterization of the subunits. Journal of Inorganic Biochemistry. 86:316-316., Number 1 AbstractWebsite
n/a
Aveiro, SS, Freire F, Clayton J, Cameloc M, Carvalho AL, Ferreira GC, Romao MJ, Macedo AL, Goodfellow BJ.  2012.  Structural studies of the p22HBP/SOUL family of heme-binding proteins. Febs Journal. 279:458-458. AbstractWebsite
n/a
Archer, M, Carvalho AL, Teixeira S, Moura I, Moura JJG, Rusnak F, Romao MJ.  1999.  Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein. Protein Science. 8:1536-1545., Number 7 AbstractWebsite
n/a
Dias, JM, Alves T, Bonifacio C, Pereira AS, Trincao J, Bourgeois D, Moura I, Romao MJ.  2004.  Structural basis for the mechanism of Ca2+ activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617. Structure. 12:961-973., Number 6 AbstractWebsite
n/a
Freire, F, Macedo AL, Aveiro SS, Romao MJ, Carvalho AL, Goodfellow BJ.  2009.  Structural and dynamic characterization of hSOUL, a heme-binding protein. Febs Journal. 276:139-140. AbstractWebsite
n/a
Pires, VMR, Pereira PMM, Brás JLA, Correia M, Cardoso V, Bule P, Alves VD, Najmudin S, Venditto I, Ferreira LMA, Romão MJ, Carvalho AL, Fontes CMGA, Prazeres DM.  2017.  Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C, mar. Journal of Biological Chemistry. 292:4847–4860., Number 12 AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.

Goodfellow, BJ, Freire F, Carvalho AL, Aveiro SS, Charbonnier P, Moulis J-M, Delgado L, Ferreira GC, Rodrigues JE, Poussin-Courmontagne P, Birck C, McEwen A, Macedo AL.  2021.  The SOUL family of heme-binding proteins: Structure and function 15 years later, 2021. 448:214189. AbstractWebsite

The SOUL, or heme-binding protein HBP/SOUL, family represents a group of evolutionary conserved putative heme-binding proteins that contains a number of members in animal, plant andbacterial species. The structures of the murine form of HEBP1, or p22HBP, and the human form of HEBP2, or SOUL, have been determined in 2006 and 2011 respectively. In this work we discuss the structures of HEBP1 and HEBP2 in light of new X-ray data for heme bound murine HEBP1. The interaction between tetrapyrroles and HEBP1, initially proven to be hydrophobic in nature, was thought to also involve electrostatic interactions between heme propionate groups and positively charged amino acid side chains. However, the new X-ray structure, and results from murine HEBP1 variants and human HEBP1, confirm the hydrophobic nature of the heme-HEBP1 interaction, resulting in Kd values in the low nanomolar range, and rules out any electrostatic stabilization. Results from NMR relaxation time measurements for human HEBP1 describe a rigid globular protein with no change in motional regime upon heme binding. X-ray structures deposited in the PDB for human HEBP2 are very similar to each other and to the new heme-bound murine HEBP1 X-ray structure (backbone rmsd ca. 1 Å). Results from a HSQC spectrum centred on the histidine side chain Nδ-proton region for HEBP2 confirm that HEBP2 does not bind heme via H42 as no chemical shift differences were observed upon heme addition for backbone NH and Nδ protons. A survey of the functions attributed to HEBP1 and HEBP2 over the last 20 years span a wide range of cellular pathways. Interestingly, many of them are specific to higher eukaryotes, particularly mammals and a potential link between heme release under oxidative stress and human HEBP1 is also examined using recent data. However, at the present moment, trying to relate function to the involvement of heme or tetrapyrrole binding, specifically, makes little sense with our current biological knowledge and can only be applied to HEBP1, as HEBP2 does not interact with heme. We suggest that it may not be justified to call this very small family of proteins, heme-binding proteins. The family may be more correctly called “the SOUL family of proteins related to cellular fate” as, even though only HEBP1 binds heme tightly, both proteins may be involved in cell survival and/or proliferation.

R
Romao, MJ.  2006.  The role of molybdenum in biology. Metal Ions in Biology and Medicine, Vol 9. 9(Alpoim, M.C., Morais, P.V., Eds.).:507-510. Abstract
n/a
P
Freire, F, Romao MJ, Macedo AL, Aveiro SS, Goodfellow BJ, Carvalho AL.  2009.  Preliminary structural characterization of human SOUL, a haem-binding protein. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65:723-726. AbstractWebsite
n/a
Voityuk, AA, Albert K, Kostlmeier S, Nasluzov VA, Neyman KM, Hof P, Huber R, Romao MJ, Rosch N.  1997.  Prediction of alternative structures of the molybdenum site in the xanthine oxidase-related aldehyde oxide reductase. Journal of the American Chemical Society. 119:3159-3160., Number 13 AbstractWebsite
n/a
O
Luis, AS, Alves VD, Romao MJ, Prates JAM, Fontes CMGA, Najmudin S.  2011.  Overproduction, purification, crystallization and preliminary X-ray characterization of a novel carbohydrate-binding module of endoglucanase Cel5A from Eubacterium cellulosolvens. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 67:491-493. AbstractWebsite
n/a
N
Bras, JLA, Alves VD, Carvalho AL, Najmudin S, Prates JAM, Ferreira LMA, Bolam DN, Romao MJ, Gilbert HJ, Fontes CMGA.  2012.  Novel Clostridium thermocellum Type I Cohesin-Dockerin Complexes Reveal a Single Binding Mode. Journal of Biological Chemistry. 287:44394-44405., Number 53 AbstractWebsite
n/a
M
Ali, MS, Muthukumaran J, Jain M, Santos-Silva T, Al-Lohedan HA, Al-Shuail NS.  2021.  Molecular interactions of cefoperazone with bovine serum albumin: Extensive experimental and computational investigations, 2021. 337:116354. AbstractWebsite

We investigated the binding of the cephalosporin-class drug cefoperazone (CFP) with bovine serum albumin (BSA) using spectroscopic techniques and in silico methods. The aim of this study was to (i) emphasize the importance of correcting for the inner filter effect in this type of study and (ii) understand the binding mechanism of CFP with BSA by addressing protein conformation and plausible binding sites. Formation of the complex was confirmed by UV–visible spectroscopy. Quenching of BSA fluorescence in the presence of CFP was also observed. Because of the high absorption of CFP in the fluorescence emission range of BSA, the fluorescence emission spectra were corrected for the inner filter effect. Fluorescence emission was studied at excitation wavelengths of 280 and 295 nm. The uncorrected data showed a significant contribution of tyrosine at the excitation wavelength of 280 nm; however, after correction, this contribution became negligible. The static-type mechanism was found to be involved in quenching, with almost 1:1 binding between BSA and CFP. Hydrogen bonding and hydrophobic forces were found to dominate the protein–ligand interactions with a slight decrease in the α-helical contents. Synchronous fluorescence spectral data (at Δλ = 15 and 60 nm) were also corrected for the inner filter effect, with the results being similar to those of excitation at 280 and 295 nm. Molecular docking and molecular dynamics (MD) simulation results suggest that, apart from the two known drug binding sites (drug site I and II), one putative binding site (binding site III) located between BSA domains 1 and 3 was also possible for CFP. MD simulations of the previously reported drug binding sites (drug site I and II) and putative binding site III revealed that binding site III showed excellent binding profiles and could be a target for future research related to BSA-drug binding.