Export 4172 results:
Sort by: Author Title Type [ Year  (Desc)]
1997
Bursakov, SA, Carneiro C, Almendra MJ, Duarte RO, Caldeira J, Moura I, Moura JJ.  1997.  Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774, Oct 29. Biochem Biophys Res Commun. 239:816-22., Number 3 AbstractWebsite

Some sulfate reducing bacteria can induce nitrate reductase when grown on nitrate containing media being involved in dissimilatory reduction of nitrate, an important step of the nitrogen cycle. Previously, it was reported the purification of the first soluble nitrate reductase from a sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774 (S.A. Bursakov, M.-Y. Liu, W.J. Payne, J. LeGall, I. Moura, and J.J.G. Moura (1995) Anaerobe 1, 55-60). The present work provides further information about this monomeric periplasmic nitrate reductase (Dd NAP). It has a molecular mass of 74 kDa, 18.6 U specific activity, KM (nitrate) = 32 microM and a pHopt in the range 8-9.5. Dd NAP has peculiar properties relatively to ionic strength and cation/anion activity responses. It is shown that monovalent cations (potassium and sodium) stimulate NAP activity and divalent (magnesium and calcium) inhibited it. Sulfate anion also acts as an activator in KPB buffer. NAP native form is protected by phosphate anion from cyanide inactivation. In the presence of phosphate, cyanide even stimulates NAP activity (up to 15 mM). This effect was used in the purification procedure to differentiate between nitrate and nitrite reductase activities, since the later is effectively blocked by cyanide. Ferricyanide has an inhibitory effect at concentrations higher than 1 mM. The N-terminal amino acid sequence has a cysteine motive C-X2-C-X3-C that is most probably involved in the coordination of the [4Fe-4S] center detected by EPR spectroscopy. The active site of the enzyme consists in a molybdopterin, which is capable for the activation of apo-nit-1 nitrate reductase of Neurospora crassa. The oxidized product of the pterin cofactor obtained by acidic hidrolysis of native NAP with sulfuric acid was identified by HPLC chromatography and characterized as a molybdopterin guanine dinucleotide (MGD).

Huyett, JE, Carepo M, Pamplona A, Franco R, Moura I, Moura JJG, Hoffman BM.  1997.  Fe-57 Q-band pulsed ENDOR of the hetero-dinuclear site of nickel hydrogenase: Comparison of the NiA, NiB, and NiC states, Oct 1. Journal of the American Chemical Society. 119:9291-9292., Number 39 AbstractWebsite
n/a
Moura, I, Bursakov S, Costa C, Moura JJ.  1997.  Nitrate and nitrite utilization in sulfate-reducing bacteria, Oct. Anaerobe. 3:279-90., Number 5 AbstractWebsite
n/a
Andrade, S, Kamenskaya EO, Levashov AV, Moura JJ.  1997.  Encapsulation of flavodoxin in reverse micelles, May 29. Biochem Biophys Res Commun. 234:651-4., Number 3 AbstractWebsite

The regulation of the properties of Desulfovibrio gigas flavodoxin in AOT/water/iso-octane micellar system was studied. UV-visible spectroscopic studies have shown that photoreduction of flavodoxin in the presence of EDTA leads to hydroquinone formation through the intermediate semiquinone. The [free FMN] - [bound to flavodoxin FMN] equilibrium (and hence, the amount of apoprotein) depends on redox state of FMN and on hydration degree which controls the micellar size. Thus, a new method of reversible cofactor removing under mild conditions (at low hydration degree of micelles) is suggested, accompained by isolation of apo-form of the protein.

Rosa, AM, Lobo AM, Branco PS, Prabhakar S, SadaCosta M.  1997.  New syntheses of the Amaryllidacaea alkaloids vasconine, assoanine, oxoassoanine, pratosine and ismine by radical cyclisation, JAN 6. TETRAHEDRON. 53:299-306., Number 1 Abstract
n/a
Rosa, AM, Lobo AM, Branco PS, Prabhakar S, Pereira AMDL.  1997.  Synthesis of phenanthridines by radical C-aryl-C-aryl coupling, JAN 6. TETRAHEDRON. 53:269-284., Number 1 Abstract
n/a
Duarte, RO, Reis AR, Girio F, Moura I, Moura JJ, Collaco TA.  1997.  The formate dehydrogenase isolated from the aerobe Methylobacterium sp. RXM is a molybdenum-containing protein, Jan 3. Biochem Biophys Res Commun. 230:30-4., Number 1 AbstractWebsite

The formate dehydrogenase (FDH) isolated from cells of Methylobacterium sp. RXM grown on molybdenum-containing mineral medium using methanol as carbon source, was partially purified (at least 90% pure as revealed by SDS-PAGE). The enzyme is unstable under oxygen and all the purification steps were conducted under strict anaerobic conditions. The molecular mass is 75 kDa (gel exclusion 300 kDa). The enzyme was characterized in terms of the kinetic parameters towards different substrates and electron acceptors, pH and temperature dependence and the effect of a wide range of compounds in the enzymatic activity. The EPR spectra of the dithionite reduced sample show, at low temperature (below 20 K), two rhombic EPR signals due to two distinct [Fe-S] centres (centre I at g-values 2.023, 1.951 and 1.933, and centre II at g-values 2.054 and 1.913). At high temperature (around 100 K) another rhombic EPR signal is optimally observed at g-values 2.002, 1.987 and 1.959 and attributed to the molybdenum site. The EPR signals assigned to the iron-sulfur centres show a strong analogy with the aldehyde oxido-reductase from Desulfovibrio gigas known to contain a Mo-pterin and two [2Fe-2S] centres and whose crystallographic structure was recently resolved.

Yu, L, Kennedy M, Czaja C, Tavares P, Moura JJ, Moura I, Rusnak F.  1997.  Conversion of desulforedoxin into a rubredoxin center, Feb 24. Biochem Biophys Res Commun. 231:679-82., Number 3 AbstractWebsite

Rubredoxin and desulforedoxin both contain an Fe(S-Cys)4 center. However, the spectroscopic properties of the center in desulforedoxin differ from rubredoxin. These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated highspin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin.

Carvalho, MTVL, Lobo AM, Branco PS, Prabhakar S.  1997.  1-aza-1',3'-diaza-3,3'-sigmatropic rearrangements - A convenient synthesis of benzimidazole derivatives, APR 28. TETRAHEDRON LETTERS. 38:3115-3118., Number 17 Abstract
n/a
Costa, C, Teixeira M, Legall J, Moura JJG, Moura I.  1997.  Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: Isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum), Apr. Journal of Biological Inorganic Chemistry. 2:198-208., Number 2 AbstractWebsite

An air-stable formate dehydrogenase, an enzyme that catalyzes the oxidation of formate to CO2, was purified from a sulfate-reducing organism, Desulfovibrio desulfuricans ATCC 27774. The enzyme has a molecular mass of approximately 150 kDa (three different subunits: 88, 29 and 16 kDa) and contains three types of redox-active centers: four c-type hemes, nonheme iron arranged as two [4Fe-4S](2+/1+) centers and a molybdenum-pterin site. Selenium was also chemically detected. The enzyme specific activity is 78 units per mg of protein. Mo(V) EPR signals were observed in the native, reduced and formate-reacted states. EPR signals related to the presence of multiple low-spin hemes were also observed in the oxidized state. Upon reduction, an examination of the EPR data under appropriate conditions distinguishes two types of iron-sulfur centers, an [Fe-S] center I (g(max)=2.050, g(med)=1.947, g(min)=1.896) and an [Fe-S] center II (g(max)=2.071, g(med)=1.926, g(min)=1.865). Mossbauer spectroscopy confirmed the presence of four hemes in the low-spin state. The presence of two [4Fe-4S](2+/1+) centers was confirmed, one of these displaying very small hyperfine coupling constants in the +1 oxidation state. The midpoint redox potentials of the enzyme metal centers were also estimated.

Franco, R, Calvete JJ, Thole HH, Raida M, Moura I, Moura JJG.  1997.  The primary structure of the beta subunit of Desulfovibrio desulfuricans (ATCC 27774) NiFe hydrogenase, Apr. Protein and Peptide Letters. 4:131-138., Number 2 AbstractWebsite

The periplasmic [NiFe] hydrogenase isolated from Desulfovibrio (D.) desulfuricans (ATCC 27774) is a heterodimer of a 28 kDa (beta) and a 60 kDa (alpha) subunit. Here we report the complete amino acid sequence of the small (beta) polypeptide chain determined by Edman degradation of proteolytic fragments. Electrospray-ionization mass spectrometry of the native protein confirmed the sequencing results. The sequence is compared with that of D. gigas [NiFe] hydrogenase whose three-dimensional structure has been recently published.

Pina, F, Parola AJ, SaintMaurice A, Manfrin MF, Moggi L, Indelli T, Scandola F.  1997.  Electron transfer between Fe(CN)(6)(3-) and iodide promoted by supercomplexation with a polyammonium macrocycle, 1997. Journal of the Chemical Society-Dalton Transactions. :2327-2330. AbstractWebsite

Some new properties promoted by the formation of a supercomplex between iron hexacyanometallates and the polyazamacrocycle [32]aneN(8) (1,5,9,13,17,21,25,29-octaazacyclodotrane) are described. In the presence of the polyazamacrocycle, thermal and photoinduced electron transfer from iodide to Fe(CN)(6)(3-) were observed in moderately acidic media. The thermal reaction is slow (k(obs) = 8.9 x 10(-4) s(-1), at 25 degrees C) and proceeds to an equilibrium (K = 7 M-2, at 25 degrees C). The reaction is almost isoergonic, with favorable enthalpy and unfavorable entropy changes (Delta G degrees = -4.8 kJ mol(-1), Delta H degrees = -160 kJ mol(-1), Delta S degrees = -0.54 kJ mol(-1) K-1). A photoinduced electron-transfer process, leading to additional iodide oxidation, was observed upon flash irradiation of equilibrated solutions. Following the photoinduced process, the system reverts to the thermal equilibrium in the dark. The promoting role of the macrocycle is thermodynamic for the thermal process (anodic shift in the Fe-II/III potential upon supercomplex formation) and kinetic for the photoinduced process [formation of ion-paired species between hexacyanoferrate(III) and iodide upon supercomplex formation]. The thermal reaction is reversible in basic media (where the macrocycle deprotonates and supercomplex formation is prevented), providing an example of on/off switching by pH changes of an electron-transfer reaction.

Pina, F, Benedito L, Melo JM, Parola AJ, Lima JC, Macanita AL.  1997.  Structural transformations of the synthetic salt 4',7-dihydroxyflavylium chloride in acid and basic aqueous solutions .1. Ground state, 1997. Anales De Quimica. 93:111-118. AbstractWebsite

A complete study of the structural pH dependent transformations of the synthetic flavylium salt 4',7-dihydroxyflavylium chloride (DHF), occurring in aqueous solutions, including the basic region, is described. The kinetic study of the transformations occurring in acidic media (quinoidal base (A) reversible arrow flavylium cation (AH(+)) reversible arrow hemiacetal (B) reversible arrow cis-chalone (C-cis) reversible arrow trans-chalcone (C-trans)) allowed to conclude that the cis-trans isomerization is faster than the tautomerization and the hydration processes, which is unique in the anthocyanins family. Results obtained with the parent compound 4'7-dimethoxyglavylium chloride (DMF) with relevance to this study are also presented. In equilibrated basic solution the existence of acid-base equilibria involving the trans-Chalcone (C-trans) and its conjugated bases, (C-trans(-) and C-trans(2)), was detected. Freshly prepared solutions at pH >7 show also the presence of a transient species identified as the ionized quinoidal base (A(-)), which is almost completely converted into C-trans(2-) with a pH dependent rate constant.

Coito, F, Lemos JM, Silva RN, Mosca E.  1997.  Adaptive control of a solar energy plant: Exploiting accessible disturbances. International journal of adaptive control and signal processing. 11:327–342(Number 4: Wiley Online Library ) Abstract

n/a

Silva, RN, Rato LM, Lemos JM, Coito F.  1997.  Cascade control of a distributed collector solar field. Journal of Process Control. 7:111–117(Number 2):Elsevier. Abstract

n/a

Amado, M.  1997.  Factores de Planeamento Físico – Espacial. Revista Estudos de Engenharia Civil. (Special):242-249.
Amado, M.  1997.  Metodologia de Aproximação Sistemática,. Faculdade de Ciências e Tecnologia. , Lisbon
Salgueiro, CA, Turner DL, Legall J, Xavier AV, Legall J.  1997.  Reevaluation of the redox and redox-Bohr cooperativity in tetrahaem Desulfovibrio vulgaris (Miyazaki F) cytochrome c3. Journal of Biological Inorganic Chemistry. 2(3):343-349. AbstractWebsite

The thermodynamic model of five interacting charge centres (four haems and an ionisable centre), which was used in the characterisation of the thermodynamic properties of Desulfovibrio vulgaris (Hildenborough) cytochrome c3 (c3DvH), is now used to reevaluate the thermodynamic properties in Desulfovibrio vulgaris (Miyazaki F) cytochrome c3 (c3DvM) on the basis of published data (Park, J.-S., Ohmura, T., Kano, K., Sagara, T., Niki, K., Kyogoku, Y. and Akutsu, H. (1996) Biochim. Biophys. Acta 1293, 45–54). Contrary to the assertion of Park et al. (1996), the pH dependence of the proton chemical shifts of haem methyls in c3DvM in several stages of oxidation is well described by the model, which involves both homotropic (e–/e–) and heterotropic (e–/H+) cooperativity. This shows that the pH dependence observed for c3DvM is not significantly more complicated than that observed for c3DvH. Since the parameters which we now obtain for c3DvM are generated with the same model as those from c3DvH, albeit using less precise data, it is possible to make a preliminary comparison of the thermodynamic properties of these two proteins and of their role in energy transduction.
The extrinsic dipolar shifts generated for each methyl group by each of the four haems in c3DvM are also determined. A novel method for approximating the magnetic susceptibility tensors is used: the orientations of the principal axes of the tensors have been shown to be closely related to the geometry of the axial ligands, which is available from the X-ray structure of c3DvM, and the components of the tensors are extrapolated from EPR g values. The inclusion of the calculated haem extrinsic contributions clearly describes the pH dependence of the haem methyls in the core of the protein, close to other haems. This description is most remarkable in the case of the haem methyl 21CH3 II I, for which the "unusual pH dependence" commented on by Park et al. (1996) is easily explained using the thermodynamic parameters determined by our model together with the calculated extrinsic dipolar shifts, thus providing a test of the analysis.

Salgueiro, CA, Turner DL, Xavier AV.  1997.  Use of Paramagnetic NMR Probes for Structural Analysis in Cytochrome c3 from Desulfovibrio Vulgaris. European Journal of Biochemistry. 244(3):721-734. AbstractWebsite

The dipolar field generated by each of the four haems in the tetrahaem ferricytochrome c3 from Desulfovibrio vulgaris (Hildenborough) (c3DvH) is determined by means of a novel procedure. In this method the 13C chemical shifts of the nuclei directly bound to the haems are used to determine the in-plane orientations of the rhombic perturbation in each of the four haems with respect to a model of molecular orbitals of eg symmetry which are subject to a rhombic perturbation [Turner, D. L., Salgueiro, C. A., Schenkels, P., LeGall, J. & Xavier, A. V. (1995) Biochim. Biophys. Acta 1246, 24–28]. These orientations, together with the components of the magnetic susceptibility tensors obtained from the EPR g values and the crystal structure of c3DvH, can be used to calculate the dipolar shifts induced by each haem throughout the protein. Thus the observed 13C paramagnetic shifts of the c3DvH haem substituents were fitted considering both the pseudocontact and contact shifts of each haem simultaneously. The dipolar shifts calculated by this method were tested against the observed dipolar shifts for some amino acid residues strategically placed in the protein and also for the haem propionate groups. The effect of considering the calculated dipolar extrinsic shifts on the behaviour of the chemical shifts of the haem methyl groups in the intermediate stages of oxidation at different pH values was also analysed. The several tests applied to the calculated dipolar shifts have shown that the method is extremely useful for predicting chemical shifts as an aid to complete proton assignment, and to add further constraints in the refinement of solution structures of paramagnetic proteins and hence to probe subtle structural rearrangements around the haem pocket.

Varela, PF, Romero A, Sanz L, Romao MJ, Topfer-Petersen E, Calvete JJ.  1997.  The 2.4 angstrom resolution crystal structure of boar seminal plasma PSP-I/PSP-II: a zona pellucida-binding glycoprotein heterodimer of the spermadhesin family built by a CUB domain architecture. Journal of Molecular Biology. 274:635-649., Number 4 AbstractWebsite
n/a
Coito, F, Lemos JM, Silva RN, Mosca E.  1997.  Adaptive control of a solar energy plant: Exploiting accessible disturbances. International journal of adaptive control and signal processing. 11:327–342., Number 4: Wiley Online Library Abstract

n/a

Silva, RN, Rato LM, Lemos JM, Coito F.  1997.  Cascade control of a distributed collector solar field. Journal of Process Control. 7:111–117., Number 2: Elsevier Abstract

n/a

Yu, L, Kennedy M, Czaja C, Tavares P, Moura JJG, Moura I, Rusnak F.  1997.  Conversion of desulforedoxin into a rubredoxin center. Biochemical And Biophysical Research Communications. {231}:{679-682}., Number {3} Abstract

Rubredoxin and desulforedoxin both contain an Fe(S-Cys)(4) center, However the spectroscopic properties of the center in desulforedoxin differ from rubredoxin, These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated high-spin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin. (C) 1997 Academic Press.

Romao, MJ, Hubert R.  1997.  Crystal structure and mechanism of action of the xanthine oxidase-related aldehyde oxidoreductase from Desulfovibrio gigas. Biochemical Society Transactions. 25:755-757., Number 3 AbstractWebsite
n/a