Costa, PM, Repolho T, Caeiro S, Diniz ME, Moura I, Costa MH.
2008.
Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments, Sep. Ecotoxicology and Environmental Safety. 71:117-124., Number 1
AbstractMetallothionein (MT) in the liver of gilthead seabreams (Sparus aurata L., 1758) exposed to Sado estuary (Portugal) sediments was quantified to assess the MT induction potential as a biomarker of sediment-based contamination by copper (Cu), cadmium (U), lead (Pb) and arsenic (As). Sediments were collected from two control sites and four sites with different levels of contamination. Sediment Cu, Cd, Pb, As, total organic matter (TOM) and fine fraction (FF) levels were determined. Generalized linear models (GLM) allowed integration of sediment parameters with liver Cu, Cd, Pb, As and MT concentrations. Although sediment metal levels were lower than expected, we relate NIT with liver Cd and also with interactions between liver and sediment Cu and between liver Cu and TOM. We suggest integrating biomarkers and environmental parameters using statistical models such as GLM as a more sensitive and reliable technique for sediment risk assessment than traditional isolated biomarker approaches. (C) 2007 Elsevier Inc. All rights reserved.
Costa, VM, Ferreira LM, Branco PS, Carvalho F, Bastos ML, Carvalho RA, Carvalho M, Remiao F.
2008.
Characterization of adrenaline and adrenaline-GSH adduct transport in freshly isolated rat cardiomyocytes, OCT 5. TOXICOLOGY LETTERS. 180:S99., Number 1: European Soc Toxicol
Abstractn/a
Dell'Acqua, S, Pauleta SR, Monzani E, Pereira AS, Casella L, Moura JJ, Moura I.
2008.
Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies, Oct 14. Biochemistry. 47:10852-62., Number 41
AbstractThe multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.
Moniz, AB.
2008.
Assessing scenarios on the future of work, November. Enterprise and Work Innovation Studies. 4:91-106., Number 4
AbstractIn this paper will be discussed different types of scenarios and the aims for using scenarios. Normaly they are being used by organisations due to the need to anticipate processes, to support policy-making and to understand the complexities of relations. Such organisations can be private companies, R&D organisations and networks of organisations, or even by some public administration institutions. Some cases will be discussed as the methods for ongoing scenario-building process (Shell Internacional). Scenarios should anticipate possible relations among social actors as in the Triple Helix Model, and is possible to develop strategic intelligence in the innovation process that would enable the construction of scenarios. Such processes can be assessed. The focus will be made in relation to the steps chosen for the WORKS scenarios. In this case is there a model of work changes that can be used for foresight? Differences according to sectors were found, as well on other dimensions. Problems of assessment are analysed with specific application to the scenario construction methods.
Moniz, A, c}as JMC{\c.
2008.
Editorial Note, November. Enterprise and Work Innovation Studies. 4:7-8., Number 4
AbstractNo abstract is available for this item.
Moniz, AB.
2008.
{Assessing scenarios on the future of work}, November. Enterprise and Work Innovation Studies. 4:91-106., Number 4
AbstractIn this paper will be discussed different types of scenarios and the aims for using scenarios. Normaly they are being used by organisations due to the need to anticipate processes, to support policy-making and to understand the complexities of relations. Such organisations can be private companies, R&D organisations and networks of organisations, or even by some public administration institutions. Some cases will be discussed as the methods for ongoing scenario-building process (Shell Internacional). Scenarios should anticipate possible relations among social actors as in the Triple Helix Model, and is possible to develop strategic intelligence in the innovation process that would enable the construction of scenarios. Such processes can be assessed. The focus will be made in relation to the steps chosen for the WORKS scenarios. In this case is there a model of work changes that can be used for foresight? Differences according to sectors were found, as well on other dimensions. Problems of assessment are analysed with specific application to the scenario construction methods.
Moniz, A, Cabeças JM.
2008.
{Editorial Note}, November. Enterprise and Work Innovation Studies. 4:7-8., Number 4
AbstractNo abstract is available for this item.
Woll, T.
2008.
{Synopsis of global scenario and forecasting surveys scenarios in risk habitat megacity (RHM)}, November. Enterprise and Work Innovation Studies. 4:49-76., Number 4
AbstractThe main objective of the paper is to provide a synopsis of global scenario and forecasting surveys. First, the paper will give an overview on existing global scenario and forecasting surveys and their specific scenario philosophies and storylines. Second, the major driving forces that shape and characterise the different scenarios will be identified. The scenario analysis has been provided for the research project Risk Habitat Megacity (HRM) that aims at developing strategies for sustainable development in megacities and urban agglomerations. The analysis of international scenario surveys is an essential component within RHM. The scenario analysis will be the basis and source for the development of own RHM-framework scenarios and for defining specific driving forces of change.
Correia, C, Besson S, Brondino CD, Gonzalez PJ, Fauque G, Lampreia J, Moura I, Moura JJ.
2008.
Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Nov. J Biol Inorg Chem. 13:1321-33., Number 8
AbstractMembrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Iota) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at Em=+197 mV (heme c) and -4.5 mV (heme b). Variable-temperature (4-120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe-4S]+ cluster and overlapping signals associated with at least three types of [4Fe-4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called "low-pH" and "high-pH," changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases.
Cordas, CM, Moura I, Moura JJ.
2008.
Direct electrochemical study of the multiple redox centers of hydrogenase from Desulfovibrio gigas, Nov. Bioelectrochemistry. 74:83-9., Number 1
AbstractDirect electrochemical response was first time observed for the redox centers of Desulfovibrio gigas [NiFe]-Hase, in non-turnover conditions, by cyclic voltammetry, in solution at glassy carbon electrode. The activation of the enzyme was achieved by reduction with H(2) and by electrochemical control and electrocatalytic activity was observed. The inactivation of the [NiFe]-Hase was also attained through potential control. All electrochemical data was obtained in the absence of enzyme inhibitors. The results are discussed in the context of the proposed mechanism currently accepted for activation/inactivation of [NiFe]-Hases.
Moura, I, Pauleta SR, Moura JJ.
2008.
Enzymatic activity mastered by altering metal coordination spheres, Nov. J Biol Inorg Chem. 13:1185-95., Number 8
AbstractMetalloenzymes control enzymatic activity by changing the characteristics of the metal centers where catalysis takes place. The conversion between inactive and active states can be tuned by altering the coordination number of the metal site, and in some cases by an associated conformational change. These processes will be illustrated using heme proteins (cytochrome c nitrite reductase, cytochrome c peroxidase and cytochrome cd1 nitrite reductase), non-heme proteins (superoxide reductase and [NiFe]-hydrogenase), and copper proteins (nitrite and nitrous oxide reductases) as examples. These examples catalyze electron transfer reactions that include atom transfer, abstraction and insertion.