Pinheiro, C, Parola AJ, Pina F, Laia CAT.
2009.
Electrochromism of Crystal Violet Lactone in the presence of Fe(III)/Fe(II) redox pair, 2009. Electrochimica Acta. 54:5593-5597.
AbstractSelective interaction between Crystal Violet Lactone and Fe(3+)/Fe(2+) in methanol leads to a reversible ionochromic colour change. This interaction can be controlled electrochemically, in order to achieve reversible colour changes with high contrast between colourless and dark blue solutions. The presented system is proposed as an alternative electrochromic solution. (C) 2009 Elsevier Ltd. All rights reserved.
Petrov, V, Gomes R, Parola AJ, Pina F.
2009.
Flash photolysis and stopped flow studies of the 2'-methoxyflavylium network in aq. acidic and alkaline solution, 2009. Dyes and Pigments. 80:149-155.
AbstractThe rate and equilibrium constants of the network of chemical species involving the dye 2'-methoxyflavylium tetrafluoroborate were characterized using stopped flow and flash photolysis in both acidic and alkaline aqueous solution. The trans-chalcone is the thermodynamic stable species in acidic solutions 2 < pH < 7; irradiation of trans-chalcone at low pH leads to the corresponding coloured flavylium cation. The system reverts to its initial state in a few hours, in the dark. The kinetics of the various steps in the system were determined; flash photolysis revealed that the rate determining process of flavylium formation is the ring closure to give the corresponding hemiketal. In alkaline medium the ionized transchalcone is the stable form and clear evidence for the existence of a hemiketal species was obtained. A write-read-erase cycle can be performed with this compound. (c) 2008 Elsevier Ltd. All rights reserved.
Gomes, R, Parola AJ, Bastkowski F, Polkowska J, Klarner FG.
2009.
Host-Guest Interactions between Molecular Clips and Multistate Systems Based on Flavylium Salts, 2009. Journal of the American Chemical Society. 131:8922-8938.
AbstractFlavylium salts contain the basic structure and show a pH-dependent sequence of reactions identical to natural anthocyanins, which are responsible for most of the red and blue colors of flowers and fruits. In this work we investigated the effect of the water-soluble molecular clips C1 and C2 substituted by hydrogen phosphate or sulfate groups on the stability and reactions of the flavylium salts 1-4 by the use of UV-vis absorption, fluorescence, and NMR spectroscopy as well as of the time-resolved pH jump and flash photolysis methods. Clip C1 forms highly stable host-guest complexes with the flavylium salts 1 and 2 and the quinoidal base 3A in methanol. The binding constants were determined by fluorometric titration to be log K = 4.1, 4.7, and 5.6, respectively. Large complexation-induced (1)H NMR shifts of guest signals, Delta delta(max), indicate that in the case of the flavylium salts 1 and 2 the pyrylium ring and in the case of the quinoidal base 3A the o-hydroxyquinone ring are preferentially bound inside the clip cavity. Due to the poor solubility of these host-guest complexes in water, the association constants could be only determined in highly diluted aqueous solution by UV-vis titration experiments for the complex formation of clip C1 with the flavylium salt 3AH(+) at pH = 2 and the quinoidal base 3A at pH = 5.3 to be log K = 4.9 for both complexes. Similar results were obtained for the formation of the complexes of the sulfate-substituted clip C2 with flavylium salt 4AH(+) and its quinoidal base 4A which are slightly better soluble in water (log K = 4.3 and 4.0, respectively). According to the kinetic analysis (performed by using the methods mentioned above) the thermally induced trans-cis chalcone isomerization (4Ct -> 4Cc) and the H(2)O addition to flavylium cation 4AH(+) followed by H(+) elimination leading to hemiketal 4B are both retarded in the presence of clip C2, whereas the photochemically induced trans-cis isomerization (4Ct -> 4Cc) is not affected by clip C2. The results presented here are explained with dominating hydrophobic interactions between the molecular clips and the flavylium guest molecules. The other potential interactions (ion-ion, cation-pi, pi-pi, and CH-pi), which certainly determine the structures of these host-guest complexes to a large extent, seem to be of minor importance for their stability.
Pinheiro, C, Parola AJ, Laia CAT, Camara A, Pina F.
2009.
Multiresponsive chromogenic systems operated by light and electrical inputs, 2009. New Journal of Chemistry. 33:2144-2147.
AbstractIn the framework of supramolecular chemistry, a three component system constituted by Fe(3+)/Fe(2+), crystal violet lactone (CVL) and a spiropyran (SPI) leads to three coloured states, cyan, magenta and yellow, as well as a transparent state, each independently addressable by light and electrical input. The system profits from fine speciation Fe(3+)/Fe(2+) complexes with CVL and SPI. Redox stimulus operates the metal, leading to different coloured complexes (ionochromism), while light stimulus operates the SPI component (photochromism).
Diniz, AM, Gomes R, Parola AJ, Laia CAT, Pina F.
2009.
Photochemistry of 7-Hydroxy-2-(4-hydroxystyryl)-1-benzopyrylium and Related Compounds, 2009. Journal of Physical Chemistry B. 113:719-727.
Abstract2-Styryl-1-benzopyrylium derivatives exhibit deeper hues and absorption spectra that are substantially red-shifted when compared with their 2-phenyl-1-benzopyrylium analogues. They follow the same pH and light-dependent network of chemical reactions previously described for 2-phenyl-1-benzopyrylium compounds. In this work, the photochromic properties of 7-hydroxy-2-(4-hydroxystyryl)-1-benzopyrylium chloride are reported. This compound was fully characterized by UV-vis absorption, fluorescence emission, pH jumps, and flash photolysis, and its properties were compared with the analogue 7,4'-dihydroxyflavylium (7-hydroxy-2-(4-hydroxyphenyl)-1- benzopyrylium). The trans-chalcones of both compounds lacking the hydroxyl in position 2 were synthesized and used as model compounds since they exhibit cis-trans isomerization but cannot be involved in the other processes resulting from the ring closure. The transient absorption of two triplets attributed to the chalcones Ct/Ct(-), and a tautomer was detected by nanosecond flash photolysis, independent of the existence of the 2-hydroxyl substituent. The experimental results are compatible with the main formation of cis-chalcone from the singlet state. In the case of the styryl derivatives, the fraction of triplet formed from excitation of Ct is much higher, and the fraction of isomerization is much smaller. For this reason, the photochemistry of 7-hydroxy-2-(4-hydroxystyryl)-1-benzopyrylium in water is much less efficient than that of its parent 7,4'-dihydroxyflavylium; however, in the presence of CTAB micelles, intense red colors can be obtained upon irradiation, confirming the usefulness of this family of compounds as photochromic systems.
Gomes, R, Diniz AM, Jesus A, Parola AJ, Pina F.
2009.
The synthesis and reaction network of 2-styryl-1-benzopyrylium salts: An unexploited class of potential colorants, 2009. Dyes and Pigments. 81:69-79.
AbstractThe syntheses, thermodynamic and kinetic properties of a series of 2-styryl-1-benzopyrylium compounds are reported. This family of compounds was found to follow the same pH- and light-dependent network of chemical reactions previously described for flavylium (2-phenyl-1-benzopyrylim) compounds. However, 2-styryl-1-benzopyrylium compounds exhibit absorption spectra substantially red shifted when compared with flavylium analogues (up to 90 nm). In particular, a photochromic system switching from yellow to light blue based on derivatives of natural anthocyanins is for the first time documented. (C) 2008 Elsevier Ltd. All rights reserved.
Raimundo, J, Vale C, Caetano M, Cesario R, Moura I.
2009.
Total lead and its stable isotopes in the digestive gland of Octopus vulgaris as a fingerprint, 2009. Aquatic Biology. 6:25-30., Number 1-3
AbstractWe hypothesised that the isotopic signature of Pb in the digestive gland of the common octopus reflects the organisms' sources of Pb, and investigated whether isotopic Pb ratios are useful in characterising octopus populations. A total of 47 Octopus vulgaris individuals were captured between November 2005 and September 2006 in 2 areas of the Portuguese coast, near Matosinhos (Area A; NW coast) and Olhao (Area B; south coast), and digestive glands were analysed for total Pb and its stable isotopes. The same determinations were performed in 22 samples of surface sediments from the 2 areas. Pb concentrations in the digestive gland of specimens from Area B (2.8 to 13.0 mu g g(-1)) exceeded the values found in Area A (1.3 to 8.3 mu g g(-1)). A similar pattern was found for the isotopic Pb ratios: (206)Pb/(207)Pb was 1.173 to 1.185 for Area A and 1.165 to 1.172 for B; (206)Pb/(208)Pb was 0.476 to 0.487 for Area A and 0.318 to 0.483 for B. The different signatures of the digestive glands are in line with those observed in the surface sediments of the 2 coastal areas (e.g. (206)Pb/(207)Pb was 1.179 to 1.207 for Area A and 1.171 to 1.181 for B). However, the isotopic Pb signature of octopus was less radiogenic than that of sediments. Because octopus has a short life span (up to 24 mo) the signature reflects recent sources of Pb that have a less radiogenic signature. The Pb signature of surface sediments tends to integrate the record of the previous few years or decades, due to the frequent resuspension of the upper layer of coastal sediments. The mixing of sediments deposited during those periods results in higher isotopic Pb ratios (more radiogenic). The consistent differences between the 2 areas, in sediments and octopus, points towards the isotopic Pb signature as a possible useful tool to distinguish octopus populations.
Roque, ACA, Bispo S, Pinheiro ARN, Antunes JMA, Gonçalves D, Ferreira HA.
2009.
Antibody immobilization on magnetic particles. Journal of Molecular Recognition. 22:77–82., Number 2
AbstractMagnetic particles {(MNPs)} offer attractive possibilities in biotechnology. {MNPs} can get close to a target biological entity, as their controllable sizes range from a few nanometres up to tens of nanometres, and their surface can be modified to add affinity and specificity towards desired molecules. Additionally, they can be manipulated by an external magnetic field gradient. In this work, the study of ferric oxide {(Fe3O4)} {MNPs} with different coating agents was conducted, particularly in terms of strategies for antibody attachment at the surfaces (covalent and physical adsorption) and the effects of blocking buffer composition and incubation times on the specific and non-specific interactions observed. The considered biological model system consisted of a coating antibody (goat {IgG)}, bovine serum albumin {(BSA)} as blocking agent, and a complementary antibody labelled with {FITC} (anti-goat {IgG).} The detection of antibody binding was followed by fluorescence microscopy and the intensity of the signals quantified. The ratio between the mean grey values of negative and positive controls, as well as the maximum intensity attainable in positive controls, were considered in the evaluation of the assays efficiency. The covalent immobilization of the coating antibody was more successful as opposed to protein adsorption. For covalent immobilization, silica-coated {MNPs}, a 5% (w/v) concentration of {BSA} in the blocking buffer and incubation times of 1 h produced the best results in terms of assay sensitivity. However, when conducting the assay for incubation periods of 10 min, the fluorescence signal was reduced by 44% but the assay specificity was maintained.
Hussain, A, Pina AS, Roque ACA.
2009.
Bio-recognition and detection using liquid crystals. Biosensors and Bioelectronics. 25:1–8., Number 1
AbstractLiquid crystals {(LCs)} are used extensively by the electronics industry as display devices. Advances in the understanding of the liquid crystalline phase and the chemistry therein lead to the development of {LC} exhibiting faster switching speed with greater twist angle. This in turn lead to the emergence of liquid crystal displays, rendering dial-and-needle based displays (such as those used in various meters) and cathode ray tubes obsolete. In this article, we review the history of {LC} and their emergence as an invaluable material for display devices and the more recent discovery of their use as sensing elements in biosensors. This new application of {LC} as tools in the development of fast and simple biosensors is envisaged to gain more importance in the foreseeable future.
Roque, ACA, Bicho A, Batalha IL, Cardoso AS, Hussain A.
2009.
Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. Journal of Biotechnology. 144:313–320., Number 4
AbstractThe surface modification of iron oxide magnetic nanoparticles {(MNPs)} with gum Arabic {(GA)} via adsorption and covalent coupling was studied. The adsorption of {GA} was assessed during {MNP} chemical synthesis by the co-precipitation method {(MNP\_GA)}, and after {MNP} synthesis on both bare magnetite and {MNP\_GA.} The covalent immobilization of {GA} at the surface of aldehyde-activated {(MNP\_GAAPTES)} or aminated {MNPs} {(MNP\_GAEDC)} was achieved through free terminal amino and carboxylate groups from {GA.} The presence of {GA} at the surface of the {MNPs} was confirmed by {FTIR} and by the quantification of {GA} by the bicinchoninic acid test. Results indicated that the maximum of {GA} coating was obtained for the covalent coupling of {GA} through its free carboxylate groups {(MNP\_GAEDC)}, yielding a maximum of 1.8&\#xa0;g of {GA} bound/g of dried particles. The hydrodynamic diameter of {MNPs} modified with {GA} after synthesis resulted in the lowest values, in opposition to the {MNPs} co-precipitated with {GA} which presented the tendency to form larger aggregates of up to 1&\#xa0;μm. The zeta potentials indicate the existence of negatively charged surfaces before and after {GA} coating. The potential of the {GA} coated {MNPs} for further biomolecule attachment was assessed through anchorage of a model antibody to aldehyde-functionalized {MNP\_GA} and its subsequent detection with an {FITC} labeled anti-antibody.