Mano, F, Aroso I, Barreiros S, Borges JP, Reis R, Duarte AR, Paiva A.
2015.
Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry & Engineering. 3(10):2504–2509.
AbstractFunctionalized electrospun fibers are of great interest for biomedical applications such as in the design of drug delivery systems. Nevertheless, in some cases the molecules of interest have poor solubility in water or have high melting temperatures. These drawbacks can be overcome using deep eutectic solvents. In this work, poly(vinyl alcohol) (PVA), a common biodegradable biopolymer, was used to produce new functionalized fibers with the eutectic mixture choline chloride:citric acid in a molar ratio of (1:1) ChCl:CA (1:1), which was used as a model system. Fibers were produced from an aqueous solution with 7.8% (w/v) and 9.8% (w/v) of 95% hydrolyzed PVA and a 2% (v/v) of ChCl:CA (1:1). Smooth, uniform fibers with an average diameter of 0.4 μm were obtained with a content of 19.8 wt % of ChCl:CA (1:1) encapsulated.
Pawlowski, S, Galinha CF, Crespo JG, Velizarov S.
2015.
Prediction of reverse electrodialysis performance by inclusion of 2D fluorescence spectroscopy data into multivariate statistical models. Separation and Purification Technology. 150:159-169.
AbstractThe power density obtainable by a reverse electrodialysis (RED) stack decreases along its operating period due to fouling; however this effect is not accounted for by the so far proposed mechanistic models. Recently, it has been demonstrated that 2D fluorescence spectroscopy can capture the time evolvement of ion-exchange membrane fouling. In this work multivariate statistical modeling was performed, by using the projection to latent structure (PLS) approach, to predict relevant RED stack performance parameters: pressure drop, stack electric resistance and net power density. Several PLS models, with and without 2D fluorescence data as models inputs, were developed. It was found that inclusion of fluorescence data considerably improved the models fitting, because the otherwise missing information about the dynamic state of ion-exchange membranes was added. Additionally, the coefficients of the optimized models revealed important contributions of some of the input parameters to the predicted outputs and allowed to mathematically confirm the qualitative observations that fouling of anion-exchange membranes facing river water is the main factor affecting the RED stack performance. This work confirms the applicability of 2D fluorescence spectroscopy for monitoring of fouling in RED stacks and demonstrates the ability of simple, statistically based models to follow RED performance.
Alves, BM, Borlido L, Rosa SASL, Silva MFF, Aires-Barros MR, Roque ACA, Azevedo AM.
2015.
Purification of human antibodies from animal cell cultures using gum arabic coated magnetic particles. Journal of Chemical Technology & Biotechnology. 90:838–846., Number 5: John Wiley & Sons, Ltd
AbstractBACKGROUND The emergence of monoclonal antibodies (mAbs) as new biopharmaceutical products requires the development of new purification methods that are not only effective but are able to reduce production costs. To address the problematic recovery of mAbs, gum arabic (GA) coated magnetic particles (MPs) were used for the purification of human antibodies from animal cells supernatants. RESULTS MPs were synthesized via co-precipitation and exhibited a spherical-like physical aspect, with an average hydrodynamic diameter of 473 nm and a zeta potential of –26 mV. The adsorption and elution of IgG on these adsorbents was thoroughly studied. Adsorption of human IgG was enhanced at pH 6, for which a qmax of 244 mg IgG g−1 MPs and Kd of 25 mg L−1 were obtained. Increasing salt concentrations at a basic pH (1 mol L−1 NaCl at pH 11) were found to improve the elution of bound IgG. The MPs were challenged with an artificial protein mixture containing human IgG, albumin, insulin and apo-transferrin. An overall yield of 84% was achieved, retrieving 92% of bound IgG. CONCLUSIONS MPs were successfully used for the capture of monoclonal antibodies from two distinct mammalian cell cultures, a Chinese hamster ovary (CHO) and a hybridoma cell culture supernatants. The elution yields were high, ranging between 84% and 94%, with overall yields ranging from 72% to 88%. Final purities of 85% were reached for hybridoma cell supernatants. © 2014 Society of Chemical Industry