Marques, A, Veigas B, Araújo A, Pagará B, Baptista {PV}, Águas H, Martins R, Fortunato E.
2019.
Paper-Based SERS Platform for One-Step Screening of Tetracycline in Milk, dec. Scientific Reports. 9, Number 1: Nature Publishing Group
AbstractThroughout the last decade, the expansion of food testing has been gradually moving towards ordinary high throughput screening methods performed on-site. The demand for point-of-care testing, able to distinguish molecular signatures with high accuracy, sensitivity and specificity has been significantly increasing. This new requirement relies on the on-site detection and monitorization of molecular signatures suitable for the surveillance of food production and processing. The widespread use of antibiotics has contributed to disease control of livestock but has also created problems for the dairy industry and consumers. Its therapeutic and subtherapeutic use has increased the risk of contamination in milk in enough concentrations to cause economic losses to the dairy industry and have a health impact in highly sensitive individuals. This study focuses on the development of a simple Surface-Enhanced Raman Spectroscopy (SERS) method for fast high throughput screening of tetracycline (TET) in milk. For this, we integrate a paper-based low-cost, fully recyclable and highly stable SERS platform, with a minimal sample preparation protocol. A two-microliter sample of milk solutions spiked with TET (from 0.01 to 1000 ppm) is dried on a silver nanoparticle coated cardboard substrate and measured via a Raman spectrophotometer. The SERS substrate showed to be extremely stable with a shelf life of several months. A global spectrum principal component analysis approach was used to test all the detected vibrational modes and their correlation with TET concentration. Peak intensity ratios (455 cm−1/1280 cm−1 and 874 cm−1/1397 cm−1) were found to be correlated with TET concentrations in milk, achieving a sensitivity as low as 0.1 ppm. Results indicate that this SERS method combined with portable Raman spectrometer is a potential tool that can be used on-site for the monitoring of TET residues and other antibiotics.
Choroba, K, Machura B, Raposo LR, Malecki JG, Kula S, Pajak M, Erfurt K, Maron AM, Fernandes AR.
2019.
Platinum(ii) complexes showing high cytotoxicity toward A2780 ovarian carcinoma cells, 2019. Dalton Trans. 48(34):13081-13093.
Abstract2,6-Bis(thiazol-2-yl)pyridines functionalized with 9-anthryl (L(1)), 9-phenanthryl (L(2)), and 1-pyrenyl (L(3)) groups were used for the preparation of [Pt(L(n))Cl]CF3SO3 (1-3). The constitution of the Pt(ii) complexes was determined by (1)H and (13)C NMR spectroscopy, HR-MS spectrometry, elemental analysis and X-ray analysis (for (1)). The electrochemical and photophysical properties of [Pt(L(n))Cl]CF3SO3 were compared with the behaviour of the Pt(ii) complexes with aryl-substituted 2,2':6',2''-terpyridine ligands. What is noteworthy is that the coordination ability of dtpy toward the Pt(ii) centre was investigated for the first time. All complexes were tested in vitro by MTS assay on four tumor cell lines, A2780 (ovarian carcinoma), HTC116 (colon rectal carcinoma), MCF7 (breast adenocarcinoma), and PC3 (prostate carcinoma) and on normal primary fibroblasts. Compounds (1-3) showed a dose dependent antiproliferative effect in the A2780 cell line with (3) > (2) > (1) and this loss of A2780 cell viability was due to a combination of an apoptotic cell death mechanism via mitochondria and autophagic cell death. Exposure to IC50 concentration of (2) induced an increase in the number of apoptotic nuclei and a depolarization of the mitochondrial membrane which is consistent with the induction of apoptosis while exposure to IC50 concentration of (3) showed an increase in the apoptotic nuclei with a slight hyperpolarization of the mitochondrial membrane that might indicate an initial step of apoptosis induction. The complexes (2) and (3) induce an increase in the production of intracellular ROS which is associated with the trigger of the apoptotic pathways. The ROS production was augmented by the presence of oxidants and correlated with an increase of oxygen radicals. The IC50 of (2) and (3) (4.4 muM and 2.9 muM, respectively) was similar to the IC50 of cisplatin (3.4 muM) in the A2780 cell line, which together with their low cytotoxicity in normal fibroblasts, demonstrates their potential for further studies.
Mirante, F, Gomes N, Corvo MC, Gago S, Balula SS.
2019.
Polyoxomolybdate based ionic-liquids as active catalysts for oxidative desulfurization of simulated diesel. Polyhedron. 170:762–770.: Pergamon
AbstractThis work compares the stability and the catalytic efficiency of different ionic liquid phosphomolybdates ([BPy]3[PMo12O40] and [BMIM]3[PMo12O40]) with a cationic (propylpyridinium) functionalized mesoporous silica nanoparticle composite (PMo12O40@PPy-MSN). These were used as solid catalysts for the oxidative desulfurization of a multicomponent model diesel using hydrogen peroxide as oxidant and a polar immiscible extraction solvent. Ionic liquid ([BMIM][PF6] was successfully used as solvent to extract sulfur compounds from model diesel. The ionic liquid phosphomolybdates showed partial solubility in the ionic liquid phase, occurring some decomposition of their Keggin structure in the soluble reaction media, probably caused by their interaction with oxidant. On the other hand, the phosphomolybdate composite PMo12O40@PPy-MSN presented high structural stability and only negligible leaching occurrence after various consecutive reaction cycles. The model diesel was near complete desulfurized after 3 h and consecutive desulfurization cycles were performed without loss of activity. Therefore, the immobilization of Keggin phosphomolybdate structure [PMo12O40]3− using cationic propylpyridinium silica nanoparticle is an assertive strategy to produce stable and active heterogeneous catalysts.
Morawiec, S, Mendes MJ, Priolo F, Crupi I.
2019.
Plasmonic nanostructures for light trapping in thin-film solar cells. Materials Science in Semiconductor Processing. 92:10-18.
AbstractThe optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic techniques, allowing for the quantification of useful and parasitic absorption in thin photovoltaic absorber deposited on top of the PBR. We achieve a significant broadband useful absorption enhancement of 90% for 0.9 µm thick μc-Si:H film and demonstrate that optical losses due to plasmonic scattering are insignificant below 730 nm. Finally, we present a successful implementation of a plasmonic light trapping scheme in a thin film a-Si:H solar cell. The quantum efficiency spectra of the devices show a pronounced broadband enhancement resulting in remarkably high short circuit current densities (Jsc).
Salgueiro, CA, Dantas JM, Morgado L.
2019.
Principles of Nuclear Magnetic Resonance and Selected Biological Applications. Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods. (
Pereira, Alice S., Tavares, Pedro, Limão-Vieira, Paulo, Eds.).:245–286., Cham: Springer International Publishing
AbstractNuclear Magnetic Resonance (NMR) spectroscopy is extremely powerful to study distinct biological systems ranging from biomolecules to specific metabolites. This chapter presents the basic concepts of the technique and illustrates its potential to study such systems. Similarly, to other spectroscopic techniques, the theoretical background of NMR is sustained by detailed mathematics and physical chemistry concepts, which were kept to the minimum. The intent is to introduce the fundamentals of the technique to science students from different backgrounds. The basic concepts of NMR spectroscopy are briefly presented in the first section, and the following sections describe applications in the biosciences field, using electron transfer proteins as model, particularly cytochromes. The heme groups endow cytochromes with particular features making them excellent examples to illustrate the high versatility of NMR spectroscopy. The main methodologies underlying protein solution structure determination are discussed in the second section. This is followed by a description of the main experiments explored to structurally map protein-protein or protein-ligand interface regions in molecular complexes. Finally, it is shown how NMR spectroscopy can assist in the functional characterization of multiheme cytochromes.
Pawlowski, S, Crespo JG, Velizarov S.
2019.
Profiled Ion Exchange Membranes: A Comprehensible Review. International Journal of Molecular Sciences. 20, Number 1
AbstractProfiled membranes (also known as corrugated membranes, micro-structured membranes, patterned membranes, membranes with designed topography or notched membranes) are gaining increasing academic and industrial attention and recognition as a viable alternative to flat membranes. So far, profiled ion exchange membranes have shown to significantly improve the performance of reverse electrodialysis (RED), and particularly, electrodialysis (ED) by eliminating the spacer shadow effect and by inducing hydrodynamic changes, leading to ion transport rate enhancement. The beneficial effects of profiled ion exchange membranes are strongly dependent on the shape of their profiles (corrugations/patterns) as well as on the flow rate and salts’ concentration in the feed streams. The enormous degree of freedom to create new profile geometries offers an exciting opportunity to improve even more their performance. Additionally, the advent of new manufacturing methods in the membrane field, such as 3D printing, is anticipated to allow a faster and an easier way to create profiled membranes with different and complex geometries.