Rodrigo, {AP }, Martins C, Tanoeiro L, Casaca M, Lopes {AR }, Parola {AJ }, Matos {AP }, Baptista {PV }, Fernandes {AR }, Costa {PM }.
2019.
New lessons from ancient life: marine invertebrates as a source of new drugs, mar. Annals of Medicine. 51:S45–S46., Number Suppl.1: Taylor & Francis
Abstractn/a
Carvalho, LCR, Lourenco A, Ferreira LM, Branco PS.
2019.
Tofacitinib Synthesis - An Asymmetric Challenge, JAN 31. EUROPEAN JOURNAL OF ORGANIC CHEMISTRY. 2019:615-624., Number 4
AbstractTofacitinib is a Janus activated kinase (JAK) inhibitor approved for the treatment of rheumatoid arthritis and active psoriatic arthritis. Its synthesis normally involves long synthetic sequences due to the chirality associated to the piperidine ring. This review is a comprehensive analysis of the different synthetic methods used to prepare this active pharmaceutical ingredient (API), covering the related journal and patent literature.
Godinho, D, Nogueira M, Bernardo M, Dias D, Lapa N, Fonseca I, Pinto F.
2019.
Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes, Aug. Environmental Science and Pollution Research. 26:22723–22735., Number 22
AbstractThe aim of the present work was to assess the efficiency of biochars obtained from the co-gasification of blends of rice huskþinspace}+þinspace}corn cob (biochar 50CC) and rice huskþinspace}+þinspace}eucalyptus stumps (biochar 50ES), as potential renewable low-cost adsorbents for Cr(III) recovery from wastewaters. The two gasification biochars presented a weak porous structure (ABETþinspace}=þinspace}63–144 m2 g−1), but a strong alkaline character, promoted by a high content of mineral matter (59.8{%} w/w of ashes for 50CC biochar and 81.9{%} w/w for 50ES biochar). The biochars were used for Cr(III) recovery from synthetic solutions by varying the initial pH value (3, 4, and 5), liquid/solid (L/S) ratio (100–500 mL g−1), contact time (1–120 h), and initial Cr(III) concentration (10–150 mg L−1). High Cr(III) removal percentages (around 100{%}) were obtained for both biochars, due to Cr precipitation, at low L/S ratios (100 and 200 mL g−1), for the initial pH 5 and initial Cr concentration of 50 mg L−1. Under the experimental conditions in which other removal mechanisms rather than precipitation occurred, a higher removal percentage (49.9{%}) and the highest uptake capacity (6.87 mg g−1) were registered for 50CC biochar. In the equilibrium, 50ES biochar presented a Cr(III) removal percentage of 27{%} with a maximum uptake capacity of 2.58 mg g−1. The better performance on Cr(III) recovery for the biochar 50CC was attributed to its better textural properties, as well as its higher cation exchange capacity.
Kourmentza, C, Araujo D, Sevrin C, Roma-Rodriques C, Lia Ferreira J, Freitas F, Dionisio M, Baptista PV, Fernandes AR, Grandfils C, Reis MAM.
2019.
Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product, 2019. Bioresour Technol. 281:31-40.
AbstractWhile screening for polyhydroxyalkanoate (PHA) producing strains, using glycerol rich by-product as carbon source, it was observed that extracellular polymers were also secreted into the culture broth. The scope of this study was to characterize both intracellular and extracellular polymers, produced by Pseudomonas putida NRRL B-14875 and Pseudomonas chlororaphis DSM 50083, mostly focusing on those novel extracellular polymers. It was found that they fall into the class of bioemulsifiers (BE), as they showed excellent emulsion stability against different hydrocarbons/oils at various pH conditions, temperature and salinity concentrations. Cytotoxicity tests revealed that BE produced by P. chlororaphis inhibited the growth of highly pigmented human melanoma cells (MNT-1) by 50% at concentrations between 150 and 200mug/mL, while no effect was observed on normal skin primary keratinocytes and melanocytes. This is the first study reporting mcl-PHA production by P. putida NRRL B-14785 and bioemulsifier production from both P. putida and P. chlororaphis strains.
Carvalho, H, Branco R, Leite F, Matzapetakis M, Roque ACA, Iranzo O.
2019.
Hydrolytic zinc metallopeptides using a computational multi-state design approach. Catalysis Science Technology. 9(23):6723-6736.
AbstractHydrolytic zinc enzymes are common targets for protein design. The versatility of the zinc chemistry can be combined with the usage of small protein scaffolds for biocatalytic applications. Despite this, the computational design of metal-containing proteins remains challenging due to the need to properly model protein–metal interactions. We addressed these issues by developing a computational multi-state design approach of artificial zinc hydrolases based on small protein scaffolds. The zinc-finger peptide Sp1f2 was redesigned to accommodate a catalytic zinc centre and the villin headpiece C-terminal subdomain HP35 was de novo designed for metal-binding and catalytic activity. Both metallopeptides exhibited metal-induced folding (KZnP,app ≈ 2 × 105 M−1) and hydrolytic activity (k2 ≈ 0.1 M−1 s−1) towards an ester substrate. By focusing on the inherent flexibility of small proteins and their interactions with the metal ion by molecular dynamics simulations and spectroscopic studies, we identified current limitations on computational design of metalloenzymes and propose how these can be overcome by integrating information of protein–metal interactions in long time scale simulations.
Maugeri, G, Lychko I, Sobral R, Roque ACA.
2019.
Identification and Antibiotic-Susceptibility Profiling of Infectious Bacterial Agents: A Review of Current and FutureTrends. Biotechnology Journal. 14(1700750)
AbstractAntimicrobial resistance is one of the most worrying threats to humankind with extremely high healthcare costs associated. The current technologies used in clinical microbiology to identify the bacterial agent and profile antimicrobial susceptibility are time‐consuming and frequently expensive. As a result, physicians prescribe empirical antimicrobial therapies. This scenario is often the cause of therapeutic failures, causing higher mortality rates and healthcare costs, as well as the emergence and spread of antibiotic resistant bacteria. As such, new technologies for rapid identification of the pathogen and antimicrobial susceptibility testing are needed. This review summarizes the current technologies, and the promising emerging and future alternatives for the identification and profiling of antimicrobial resistance bacterial agents, which are expected to revolutionize the field of clinical diagnostics.
Lopes, MM, Barrulas RV, Paiva TG, Ferreira ASD, Zanatta M, Corvo MC.
2019.
Molecular Interactions in Ionic Liquids: The NMR Contribution towards Tailored Solvents. Nuclear Magnetic Resonance. : IntechOpen
AbstractIonic liquids have been on the spotlight of chemical research field in the last decades. Their physical properties (low vapor pressure, thermal stability, and conductivity) and the possibility of fine tuning make them a versatile class of compounds for a wide range of applications, such as catalysis, energy, and material sciences. Ionic liquids can establish multiple intermolecular interactions with solutes such as electrostatic, van der Waals, or hydrogen bonds. The prospect of designing ionic liquid structures toward specific applications has attracted the attention to these alternative solvents. However, their rational design demands a molecular detailed view, and Nuclear Magnetic Resonance is a unique and privileged technique for this purpose, as it provides atomic resolution and at the same time enables the study of dynamic information. In this chapter, we provide an overview about the application of Nuclear Magnetic Resonance spectroscopy techniques as a methodology for the rational design of ionic liquids as solvents for small organic compounds, CO2 capture, and polymers such as cellulose focusing mainly in the last 10 years.
Gavinho, SR, Prezas PR, Ramos DJ, Sá-Nogueira I, Borges JB, Lança CM, Silva JC, Henriques C, Pires E, Kumar JS, Graça MP.
2019.
Nontoxic glasses: Preparation, structural, electrical and biological properties. Applied Ceramics Technology. 16(5):1885-1894.
AbstractBacterial infections affect about 1 in 5 patients who receive a dental implant within 5 years of surgery. To avoid the implant rejection it is necessary for the development of innovative biomaterials, with addition or substitution of the ions, for implant coatings that promote a strong bond with the new host bone and antibacterial action. The objective of this work was to synthesize a bioactive glass with different silver concentrations to evaluate their antibacterial performance. The glasses were synthesized with up to 2% silver content by melt-quenching. Structural, morphological, biological, and electrical properties of all samples were studied. The biological behavior was evaluated through cytotoxicity tests and antibacterial activity. The structural analysis shows that the introduction of silver do not promote significant changes, not altering the advantageous properties of the bioglass of the bioglass. It was verified that the glasses with a silver content from 0.5% to 2%, completely prevented the growth of both Staphylococcus aureus and Escherichia coli while being nontoxic toward mammalian cells. Therefore, these bioglasses are promising materials to be used in the production of dental implants with antimicrobial activity.
Chaparro, CIP, Loureiro LR, Valente MA, Videira PA, Borges JP, Soares PIP.
2019.
Synthesis and Characterization of Magnetic Nanoparticles and their internalization on Tumor Cell Lines. 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). :1-4.
AbstractTruncated sialylated O-glycans, such as cell-surface carbohydrate antigen sialyl-Tn (STn) are overexpressed by several cancer types, but not by the respective normal tissues. STn expression is associated with oncogenesis and metastatic ability of cancer cells, with reduced overall survival and lack of response to chemotherapy. Advances in nanomedicine have resulted in rapid development of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with considerable potential in cancer treatment. Therefore, in this study SPIONs coated with oleic acid (OA) or dimercaptosuccinic acid (DMSA) were developed and characterized for internalization in two breast cancer cell lines: cell line expressing the STn antigen and the corresponding control. SPIONs with an average diameter of 8 nm showed superparamagnetic behavior and high potential to be used as magnetic hyperthermia agents. OA and DMSA coating provided high stability of SPIONs in physiological conditions while not changing their main properties. NPs internalization studies showed a higher accumulation of DMSA coated NPs in the breast cancer MDA-MB-231 WT cell line. In MDA-MB-231 cell line expressing STn both coated NPs showed a similar accumulation. Therefore, STn antigen can act as a receptor capable of detecting and covalently bind to the molecules present on NPs surface and induce their cellular uptake by endocytosis.
Batalha, IL, Lychko I, Branco RJF, Iranzo O, Roque ACA.
2019.
β-Hairpins as peptidomimetics of human phosphoprotein-binding domains. Organic & Biomolecular Chemistry. 17:3996-4004.
AbstractPhosphoprotein-binding domains interact with cognate phosphorylated targets ruling several biological processes. The impairment of such interactions is often associated with disease development, namely cancer. The breast cancer susceptibility gene 1 (BRCA1) C-terminal (BRCT) domain is involved in the control of complex signaling networks of the DNA damage response. The capture and identification of BRCT-binding proteins and peptides may be used for the development of new diagnostic tools for diseases with abnormal phosphorylation profiles. Here we show that designed cyclic β-hairpin structures can be used as peptidomimetics of the BRCT domain, with high selectivity in binding to a target phosphorylated peptide. The amino acid residues and spatial constraints involved in the interaction between a phosphorylated peptide (GK14-P) and the BRCT domain were identified and crafted onto a 14-mer β-hairpin template in silico. Several cyclic peptides models were designed and their binding towards the target peptide and other phosphorylated peptides evaluated through virtual screening. Selected cyclic peptides were then synthesized, purified and characterized. The high affinity and selectivity of the lead cyclic peptide towards the target phosphopeptide was confirmed, and the possibility to capture it using affinity chromatography demonstrated. This work paves the way for the development of cyclic β-hairpin peptidomimetics as a novel class of affinity reagents for the highly selective identification and capture of target molecules.
Surra, E, Bernardo M, Lapa N, Esteves IAAC, Fonseca I, Mota JPB.
2019.
Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. Journal of Environmental Management. 249:109351.
AbstractMaize Cob Waste (MCW) is available worldwide in high amounts, as maize is the most produced cereal in the world. MCW is generally left in the crop fields, but due to its low biodegradability it has a negligible impact in soil fertility. Moreover, MCW can be used as substrate to balance the C/N ratio during the Anaerobic co-Digestion (AcoD) with other biodegradable substrates, and is an excellent precursor for the production of Activated Carbons (ACs). In this context, a biorefinery is theoretically discussed in the present review, based on the idea that MCW, after proper pre-treatment is valorised as precursor of ACs and as co-substrate in AcoD for biomethane generation. This paper provides an overview on different scientific and technological aspects that can be involved in the development of the proposed biorefinery; the major topics considered in this work are the following ones: (i) the most suitable pre-treatments of MCW prior to AcoD; (ii) AcoD process with regard to the critical parameters resulting from MCW pre-treatments; (iii) production of ACs using MCW as precursor, with the aim to use these ACs in biogas conditioning (H2S removal) and upgrading (biomethane production), and (iv) an overview on biogas upgrading technologies.
Nogueira, M, Matos I, Bernardo M, Pinto F, Lapa N, Surra E, Fonseca I.
2019.
Char from Spent Tire Rubber: A Potential Adsorbent of Remazol Yellow Dye. C—Journal of Carbon Research. 5, Number 4
AbstractA char produced from spent tire rubber showed very promising results as an adsorbent of Remazol Yellow (RY) from aqueous solutions. Spent tire rubber was submitted to a pyrolysis process optimized for char production. The obtained char was submitted to chemical, physical, and textural characterizations and, subsequently, applied as a low-cost adsorbent for dye (RY) removal in batch adsorption assays. The obtained char was characterized by relatively high ash content (12.9% wt), high fixed-carbon content (69.7% wt), a surface area of 69 m2/g, and total pore volume of 0.14 cm3/g. Remazol Yellow kinetic assays and modelling of the experimental data using the pseudo-first and pseudo-second order kinetic models demonstrated a better adjustment to the pseudo-first order model with a calculated uptake capacity of 14.2 mg RY/g char. From the equilibrium assays, the adsorption isotherm was fitted to both Langmuir and Freundlich models; it was found a better fit for the Langmuir model to the experimental data, indicating a monolayer adsorption process with a monolayer uptake capacity of 11.9 mg RY/g char. Under the experimental conditions of the adsorption assays, the char presented positive charges at its surface, able to attract the deprotonated sulfonate groups (SO3−) of RY; therefore, electrostatic attraction was considered the most plausible mechanism for dye removal.
Torrisi, G, Luis JS, Sanchez-Sobrado O, Raciti R, Mendes MJ, Águas H, Fortunato E, Martins R, Terrasi A.
2019.
Colloidal-structured metallic micro-grids: High performance transparent electrodes in the red and infrared range. Solar Energy Materials and Solar Cells. 197:7-12.
AbstractOne of the most promising approaches to produce industrial-compatible Transparent Conducting Materials (TCMs) with excellent characteristics is the fabrication of TCO/metal/TCO multilayers. In this article, we report on the electro-optical properties of a novel high-performing TCO/metal/TCO structure in which the intra-layer is a micro-structured metallic grid instead of a continuous thin film. The grid is obtained by evaporation of Ag through a mask of polystyrene colloidal micro-spheres deposited by the Langmuir-Blodgett method and partially dry-etched in plasma. IZO/Ag grid/IZO structures with different thicknesses and mesh dimensions have been fabricated, exhibiting excellent electrical characteristics (sheet resistance below 10 Ω/□) and particularly high optical transmittance in the near-infrared spectral region as compared to planar (unstructured) TCM multilayers. Numerical simulations were also used to highlight the role of the Ag mesh parameters on the electrical properties.
Ambrosi, E, Bartlett P, Berg AI, Brivio S, Burr G, Deswal S, Deuermeier J, Haga M-A, Kiazadeh A, Kissling G, Kozicki M, Foroutan-Nejad C, Gale E, Gonzalez-Velo Y, Goossens A, Goux L, Hasegawa T, Hilgenkamp H, Huang R, Ibrahim S, Ielmini D, Kenyon AJ, Kolosov V, Li Y, Majumdar S, Milano G, Prodromakis T, Raeishosseini N, Rana V, Ricciardi C, Santamaria M, Shluger A, Valov I, Waser R, Stanley Williams R, Wouters D, Yang Y, Zaffora A.
2019.
Electrochemical metallization ReRAMs (ECM) - Experiments and modelling: General discussion. Faraday Discussions. 213:115-120.
Abstractn/a