
Tiago Marques do Vale

Master of Science

Executing requests concurrently in state
machine replication

Dissertação para obtenção do Grau de Doutor em

Informática

Orientador: João Manuel dos Santos Lourenço,
Professor Auxiliar, Universidade Nova de Lisboa

Co-orientador: Ricardo Jorge Freire Dias,
Engenheiro de Software Sénior, Suse Linux

Júri

Presidente: Luís Caires, Universidade Nova de Lisboa
Arguentes: Aleksandar Dragojevic, Microsoft Research

Alysson Neves Bessani, Universidade de Lisboa
Vogais: João Manuel dos Santos Lourenço, Universidade Nova de Lisboa

Luís Eduardo Teixeira Rodrigues, Universidade de Lisboa
Nuno Manuel Ribeiro Preguiça, Universidade Nova de Lisboa

Maio, 2019

Executing requests concurrently in state machine replication

Copyright © Tiago Marques do Vale, Faculdade de Ciências e Tecnologia, Universidade

NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “novathesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Abstract

State machine replication is one of the most popular ways to achieve fault tolerance. In

a nutshell, the state machine replication approach maintains multiple replicas that both

store a copy of the system’s data and execute operations on that data. When requests

to execute operations arrive, an “agree-execute” protocol keeps replicas synchronized:

they first agree on an order to execute the incoming operations, and then execute the

operations one at a time in the agreed upon order, so that every replica reaches the same

final state.

Multi-core processors are the norm, but taking advantage of the available processor

cores to execute operations simultaneously is at odds with the “agree-execute” protocol:

simultaneous execution is inherently unpredictable, so in the end replicas may arrive

at different final states and the system becomes inconsistent. On one hand, we want to

take advantage of the available processor cores to execute operations simultaneously and

improve performance. But on the other hand, replicas must abide by the operation order

that they agreed upon for the system to remain consistent. This dissertation proposes

a solution to this dilemma. At a high level, we propose to use speculative execution

techniques to execute operations simultaneously while nonetheless ensuring that their

execution is equivalent to having executed the operations sequentially in the order the

replicas agreed upon. To achieve this, we: (1) propose to execute operations as serializable

transactions, and (2) develop a new concurrency control protocol that ensures that the

concurrent execution of a set of transactions respects the serialization order the replicas

agreed upon. Since speculation is only effective if it is successful, we also (3) propose

a modification to the typical API to declare transactions, which allows transactions to

execute their logic over an abstract replica state, resulting in fewer conflicts between

transactions and thus improving the effectiveness of the speculative executions.

An experimental evaluation shows that the contributions in this dissertation can

improve the performance of a state-machine-replicated server up to ≈ 4×, reaching up to

≈ 75% the performance of a concurrent fault-prone server.

Keywords: Replication, concurrency, state machine replication, transactional model

v

Resumo

A replicação de máquina de estados é uma das maneiras mais populares de garantir

tolerância a faltas. Em suma, a abordagem consiste em manter várias réplicas que arma-

zenam uma cópia dos dados do sistema e executam operações sobre esses dados. Quando

chegam pedidos para executar operações, um protocolo “concorda-e-executa” mantém as

réplicas sincronizadas: primeiro as réplicas acordam uma ordem na qual vão executar as

operações, e depois executam as operações uma de cada vez na ordem acordada, de modo

a garantir que todas as réplicas produzem o mesmo estado final.

Processadores com vários núcleos são a norma, mas tirar partido deles para executar

operações simultaneamente vai contra o protocolo “concorda-e-executa:” execução simul-

tânea é inerentemente imprevisível, portanto as réplicas podem produzir estados finais

diferentes e o sistema fica inconsistente. Por um lado, queremos tirar partido dos vários

núcleos para executar operações simultaneamente e melhorar o desempenho. Por outro,

as réplicas têm de respeitar a ordem de operações que acordaram para o sistema se manter

consistente. Esta dissertação propõe uma solução para este dilema: utilizar técnicas de

execução especulativa para executar operações simultaneamente mas garantindo que essa

execução é equivalente a ter executado as operações sequencialmente na ordem acordada

pelas réplicas. Para atingir este fim (1) propomos executar operações como transações

serializáveis, e (2) desenhamos um novo protocolo de controlo de concorrência que ga-

rante que a execução concorrente das transações respeita a ordem acordada pelas réplicas.

Como a execução especulativa só é eficaz se for bem sucedida, também (3) propomos

uma modificação à interface típica para declarar transações, que permite as transações

executarem a sua lógica sobre um estado abstrato, o que resulta em menos conflitos entre

transações e portanto numa melhoria da eficácia da execução especulativa.

Uma avaliação experimental mostra que as contribuções nesta dissertação podem

permitir melhorar até ≈ 4× o desempenho de um servidor tolerante a falhas, chegando

até ≈ 75% do desempenho de um servidor concorrente mas intolerante a faltas.

Palavras-chave: Replicação, concorrência, replicação de máquina de estados, modelo

transacional

vii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem statement . 2

1.3 Thesis statement and contributions . 2

1.4 Outline . 3

2 Preliminaries 5

2.1 State machine replication . 5

2.2 Transactions . 7

3 Pot: Preordered transactions 11

3.1 Introduction . 11

3.2 Design . 13

3.2.1 Ordering phase: Pot sequencer . 14

3.2.2 Execution phase: Pot Concurrency Control 15

3.3 Implementation . 19

3.3.1 Software Transactional Memory . 20

3.3.2 Hardware Transactional Memory 22

3.4 Experimental evaluation . 25

3.4.1 Software Transactional Memory . 26

3.4.2 Hardware Transactional Memory 33

4 LSD: Lazy State Determination 37

4.1 Introduction . 37

4.2 Overview . 39

4.2.1 The pitfalls of the traditional API 39

4.2.2 Introducing LSD . 40

4.3 LSD Design . 42

4.3.1 Design overview . 42

4.3.2 Interface . 43

4.3.3 Concurrency control . 45

4.3.4 Distributed transactions . 51

4.4 Evaluation . 51

ix

CONTENTS

4.4.1 Realistic application: TPC-C . 52

4.4.2 Microbenchmarks . 55

5 Concurrent state machine replication using Pot+LSD 59

5.1 Background . 59

5.1.1 Pot . 59

5.1.2 LSD . 62

5.2 Combining Pot and LSD . 65

5.3 Evaluation . 67

5.3.1 Setup . 67

5.3.2 Low contention . 67

5.3.3 High contention . 69

6 Related work 71

6.1 Deterministic multithreading . 71

6.2 State machine replication . 72

6.2.1 Using application-specific information 72

6.2.2 Without using application-specific information 73

6.3 Transactions . 75

6.3.1 Concurrency control . 75

6.3.2 Increased concurrency . 75

7 Conclusion 79

Bibliography 83

x

List of Figures

2.1 Overview of the state machine replication approach. 7

2.2 A typical transactional API. 8

3.1 Example of the most common concurrency bugs. 12

3.2 Pot methodology. 16

3.3 Pot STM implementation. 20

3.4 Pot HTM implementation. 23

3.5 Parameters used in STAMP and STMBench7. 26

3.6 Pot STM transaction vs. baseline STM transaction. 27

3.7 Pot STM’s result on the STAMP benchmark. (1/2) 29

3.8 Pot vs. DeSTM, in practice. 30

3.9 Pot vs. DeSTM, in theory. 30

3.10 Pot STM’s result on the STMBench7 benchmark. (1/2) 31

3.11 Pot STM’s result on the STAMP benchmark. (2/2) 32

3.12 Pot STM’s result on the STMBench7 benchmark. (2/2) 33

3.13 Pot HTM’s result on the STAMP benchmark. (1/2) 34

3.14 Pot HTM’s result on the STAMP benchmark. (2/2) 35

4.1 Simplified portion of a TPC-C’s New Order-like transaction. 39

4.2 Overview of the system’s architecture. 42

4.3 The LSD interface operations. 43

4.4 LSD-aware OCC protocol. 47

4.5 Lock mode compatibility matrix . 48

4.6 LSD-aware 2PL protocol. 49

4.7 LSD’s result on the TPC-C benchmark. 53

4.8 LSD’s result on microbenchmarks. 56

5.1 Traditional transactions vs. preordered transactions. 61

5.2 Traditional API vs. LSD API. 62

5.3 Combined Pot+LSD protocol. 66

5.4 Pot+LSD’s result on the TPC-C benchmark with a low-contention workload. 68

5.5 Pot+LSD’s result on the TPC-C benchmark with a high-contention workload. 70

xi

Acronyms

2PL Two-phase Locking

HTM Hardware Transactional Memory

LSD Lazy State Determination

OCC Optimistic Concurrency Control

PCC Pot Concurrency Control

Pot Preordered transactions

ROT Rollback-only Transaction

STM Software Transactional Memory

TM Transactional Memory

*

xiii

C
h
a
p
t
e
r

1
Introduction

1.1 Context

We, the human society, increasingly depend on computing systems and the Internet

to support many aspects of our existence. Computers power virtually everything from

entertainment (e.g. Netflix [52]) to social (e.g. Facebook, Twitter [26, 66]) and economic

interactions (e.g. Amazon, eBay [4, 23]). As a consequence, the systems we build operate

on a scale like never before.

The ubiquity of computer systems, and the scale at which they operate, mean that

failures are common and inevitable. Machines may fail due to a variety of reasons, such

as hardware malfunction, or software bugs. The following is a quote from Jeff Dean, a

Google Senior Fellow as of March 2017:

In each [Google] cluster’s first year, it’s typical that 1,000 individual machine

failures will occur. You have to provide reliability on a software level. [17, 60]

— Jeff Dean, Google Senior Fellow.

At first glance it might seem that the majority of systems should not experience failures

as commonly because they do not serve a Google-scale user base. But with the advent of

Infrastructure as a Service (IaaS) products such as Amazon EC2 [3] and Google Compute

Engine, [29] small and medium-sized companies are deploying their systems in IaaS

offerings. [6] These companies are also effectively operating their systems on large-scale

clusters where failures are common. [28]

Since we seem to rely more and more on computer systems, they should tolerate

failures, i.e. operate correctly even in their presence. Redundancy is the typical approach

to achieve fault tolerance. For example, if we do not want to lose our favorite video

1

CHAPTER 1. INTRODUCTION

file (e.g. a cat playing a piano),1 we should keep multiple copies of the video file. In the

same vein, to tolerate the failure of a computation it should be performed by multiple

entities. The context of this dissertation and the research it describes is fault tolerance of

computation.

1.2 Problem statement

State machine/active replication [41, 58] is the standard way to build fault-tolerant sys-

tems. In a nutshell, the system maintains multiple replicas that both store a copy of the

system’s data and execute operations on that data. When requests to execute operations

arrive, an “agree-execute” protocol keeps replicas synchronized: they first agree on an

order to execute the incoming operations, and then execute the operations in the agreed

upon order, so that every replica reaches the same final state. As a result, the replicas

execute operations sequentially. However, replicas are made up of multi-core processors,

since the speed of an individual processor core has plateaued. But taking advantage of

the available processor cores to execute operations simultaneously is at odds with the

“agree-execute” protocol: simultaneous execution is inherently unpredictable, so in the

end replicas may arrive at different final states and the system becomes inconsistent. So

we have a dilemma. On one hand, we want to take advantage of the available processor

cores to execute operations simultaneously. But on the other hand, replicas must abide

by the operation order that they agreed upon for the system to remain consistent.

1.3 Thesis statement and contributions

The research in this dissertation proposes a solution to the dilemma of exploiting multi-

core processors in state machine replication. As such, this dissertation claims the follow-

ing thesis to be true:

It is possible to improve the performance of the state machine replication’s execution
phase by taking advantage of multiple processors to execute operations concurrently,
while at the same time maintaining a sequential programming model and respecting
the safety properties of the state machine replication approach.

To back the thesis statement, we propose to use speculative execution techniques

to execute operations simultaneously while nonetheless ensuring that their execution

is equivalent to having executed the operations sequentially in the order the replicas

agreed upon. To achieve this, the research in this dissertation: (1) proposes to execute

operations as serializable transactions, and (2) develops a new concurrency control pro-

tocol, Preordered transactions (Pot), that ensures that the concurrent execution of a set

1Adorable!

2

1.4. OUTLINE

of transactions respects a specific serialization order, which in this case is the order repli-

cas agreed upon. Furthermore, since speculation is only effective if it is successful, the

research in this dissertation also (3) proposes a modification to the typical API to declare

transactions (e.g. begin, read, write, and commit). The proposed API, called Lazy State De-

termination (LSD), allows transactions to execute their logic over an abstract replica state,

which results in fewer conflicts between transactions and consequently in more successful

speculative executions.

An experimental evaluation of a prototype implementation of Pot and LSD (Sec-

tion 5.3) shows that they can improve the performance of a fault-tolerant server up to ≈ 4×.

From other point of view, the experimental results show that a fault-tolerant server can go

from being ≈ 8× slower (using sequential execution) to only ≈ 25% slower (using concur-

rent execution with the contributions in this dissertation) than a concurrent fault-prone

server.

In summary, the research described in the following chapters of this dissertation

makes the following contributions:2

• Pot, described in chapter 3, a methodology and associated concurrency control

protocol that ensures that the concurrent execution of requests in the state machine

replication model is safe. This contribution has been published in peer-reviewed

venues; [67, 68] and

• LSD, described in chapter 4, an extended transactional API and associated concur-

rency control protocol that enhances the effectiveness of Pot. This contribution has

been submitted to peer-reviewed venues.

The contributions described in this dissertation have contributed to the genesis of the

“HiPSTr: High-Performance Serializable Transactions” national research project, funded

by Fundação para a Ciência e a Tecnologia under contract PTDC/CCI-COM/32456/2017

/ LISBOA-01-0145-FEDER-032456. Part of the work described in this dissertation has

been conducted in the context of the HiPSTr research project.

This research was partially funded by Fundação para a Ciência e Tecnologia under

the Ph.D. scholarship SFRH/BD/84497/2012, and the POCI-COMPETE2020 projects

UID/CEC/04516/2013 and PTDC/CCI-COM/32456/2017 / LISBOA-01-0145-FEDER-

032456.

1.4 Outline

The rest of this document is structured as follows. Chapter 2 succinctly describes the con-

text of this dissertation’s contributions. Chapter 3 presents our first proposal, Pot, which

2We assure you that, despite the names of the contributions, the author of this dissertation only consumes
legal drugs, such as alcohol and caffeine, for recreational purposes. Well, to be entirely honest, caffeine was
consumed whilst producing this document. Does that count as recreation?

3

CHAPTER 1. INTRODUCTION

uses speculative techniques to ensure that the concurrent execution of a set of transac-

tions respects a specific serialization order. Chapter 4 presents our second proposal, LSD,

which improves the efficacy of Pot’s speculation. Chapter 5 realizes the full vision of this

dissertation’s research by combining Pot and LSD. Chapter 6 discusses related work, and

chapter 7 concludes the dissertation.

4

C
h
a
p
t
e
r

2
Preliminaries

This chapter describes the context of the contributions described in this dissertation.

Section 2.1 presents the state machine replication model. Section 2.2 overviews the

transactional model.

2.1 State machine replication

As society increases its reliance on computer systems, these should strive to be as fault

tolerant as they can. State machine replication [41, 58] is a general approach to con-

struct fault-tolerant systems. To understand how it works, let us go through a thought

experiment.

Consider a computer system that provides some service, e.g. a bank account. The

service maintains state, such as the account’s balance, and provides operations that ma-

nipulate that state, such as an operation to withdraw money. A simple realization of this

system is to have a client-server architecture. The server consists of a single machine that

stores the service’s state and execute the service’s operations. The clients send requests

to the server machine, which executes the requested operations and replies with their

results.

However, now consider that some accident happens and as a consequence we lose the

server machine’s storage. We lost our bank account and it is unacceptable. To tolerate

situations like these, we need to have redundant copies of the service’s state stored else-

where. We can add an additional machine to our system to stores a redundant copy of

the service’s state.

This approach is called primary-backup. [2] The idea is that one of the machines will

execute the service’s operations on behalf of the clients—the primary—while one or more

additional machines store redundant copies of the state—the backups. The primary ships

5

CHAPTER 2. PRELIMINARIES

the updates it performs to the state to the backups in order to keep their redundant copy

of the state up to date. Should the primary be lost, the system can tolerate its fault by

promoting one of the backups to primary.

Now consider a more subtle scenario where the primary continues operating but per-

forms its jobs incorrectly, e.g. due to some bug in its implementation, or some transient

error such as a bit flip. Under this circumstance, it is possible for the primary to incor-

rectly perform an operation’s computation. For example, it can update the bank account’s

balance to an incorrect value. As soon as the incorrect computation reaches the backups,

every copy of the service’s state is now wrong. The primary-backup scheme we described

is able to tolerate the fault of the service’s data as long as there we have one more backup.

However, it is not able to tolerate the fault of the primary’s computation.

The state machine replication approach can tolerate faults of both the service’s data

and computation. The general idea is to take a system and replicate both its data and

operations across a set of replicas. Since these replicas each store a copy of the system’s

data, this data is not lost as long as there is at least one replica that does not fail. And since

replicas also execute every operation submitted to the system, the system can continue

operating as long as a majority of correct replicas execute the operations.

In the primary-backup approach, executing the clients requests was the primary’s

responsibility. The primary would update the various redundant copies of the service’s

state so they remained synchronized with the primary copy. In state machine replication,

executing the clients requests is every replica’s responsibility. A question arises naturally:

how are the various copies of the state kept synchronized? Clients cannot simply send

their requests to all replicas in an uncoordinated manner. The replicas may receive, and

process, the clients requests in different orders. This can lead the replicas’ state to diverge.

For example, consider a bank account with a balance of 100€. Imagine there are three

clients requesting three different operations, and that the system has three replicas. The

first client, D, wants to deposit 100€. The second client, W , wants to withdraw 150€.

The third and final client, C wants to credit the account with an interest rate of 10%. One

replica may execute the request of D, (balance is now 200€) then W , (balance is now 50€)

and finally C, leading to a final balance of 55€. Other replicas may execute the requests

in different orders, e.g. (D,C,W) leads to a balance of 70€, whereas (C,D,W) leads to a

balance of 60€. This could lead to a situation where each replicas has a different state!

The state machine replication approach deals with this issue by having the replicas

first reach a consensus on which order to execute incoming requests. Once the replicas

have agreed on a common order, they execute the requests in that order, ensuring that

every correct replica reaches the same final state. Figure 2.1 depicts an overview of the

state machine replication approach. A set of clients (left) submit requests to the system

concurrently. The replicas (right) run an agreement protocol, e.g., Paxos, [42] that totally

orders incoming requests. The replicas execute the requests sequentially in the agreed

upon order, ensuring that each correct replica arrives at the same final state. Essentially,

we can divide state machine replication in two phases: first, the agreement phase, where

6

2.2. TRANSACTIONS

!

!

!

!

Agreement
21 3 4

21 3 4

#

21 3 4

#

21 3 4

#

Figure 2.1: Overview of the state machine replication approach. Clients (left) submit requests
to the system concurrently. An agreement protocol orders the concurrent requests. The repli-
cas (right) execute the requested operations in the agreed upon order, which keeps their individual
state synchronized.

replicas agree on an order for all requests; followed by the execution phase, where replicas

execute the requested operations in the order agreed upon in the previous phase.

The concern of this dissertation’s research is state machine replication’s execution

phase. Specifically, the tension between the fact that the replicas have multi-core proces-

sors and the requirement that replicas execute operations sequentially. The research in

this dissertation proposes a way to exploit the replicas’ multi-core processors to execute

operations concurrently such that the outcome is still equivalent to having executed those

operations sequentially. Even though state machine replication allows us to build systems

that tolerate from simple crashes to more complex failures [43] such as data corruption

and software errors, this dissertation, and its research, is orthogonal to any particular

type of fault.

2.2 Transactions

The research in this dissertation proposes a way to safely execute operations concurrently

under the state machine replication model. A central part of that way is to execute opera-

tions as serializable transactions, [24, 55] henceforth referred to simply as transactions.

A serializable transaction is a sequence of actions that appear to execute instanta-

neously as a single, indivisible, operation—the system itself will actively ensure this

illusion. For example, a transaction that implements the action of withdrawing money

from a bank account will first check if there is enough money in the account, and if so,

7

CHAPTER 2. PRELIMINARIES

!

BEGIN
val := READ(stock)
if val > 0:

WRITE(stock, val - 1)
COMMIT

else:
ABORT

"

Figure 2.2: A typical transactional API consisting of the begin, read, write, commit, and abort
operations. The example logic is a simplified transaction that buys one item from an e-commerce
application.

deduct the withdrawn amount from the balance. As per the definition of a serializable

transaction, the act of checking if the account has enough money and the act of deducting

the withdrawn amount appear to happen simultaneously. This means that the transaction

will not experience any interference from other transactions, such as a modification of

the account’s balance between checking whether there is enough money, and updating

the account’s balance.

A developer specifies a transaction’s logic using a well defined API. Without loss

of generality, the API is typically composed of five operations. The begin operation

starts a transaction. A transaction can observe and modify the state using the read and

write operations, respectively. A transaction finishes the execution of its logic with the

commit operation, which atomically applies all the transaction’s modifications to the

state. Alternatively, a transaction may finish with the abort operation, which reverts all

the modifications the transaction performed.

Consider the example in Figure 2.2, which shows the API in action to define a sim-

plified transaction that buys one item from an e-commerce application. The transaction

checks whether there is enough stock available, and if there is, the transaction decrements

the amount in stock.

Given that a transaction is an indivisible unit of work, we can reason about the system

as if it executes transactions one at a time. However, a system that actually executes trans-

actions sequentially is inefficient. In practice, systems execute transactions concurrently,

as it allows the system to make better use of the available resources. For example, if a

transaction stalls waiting for disk access, the system can keep the processor performing

useful work by executing another transaction while the aforementioned transaction waits.

The system can also execute transactions in parallel to take advantage of the fact that

modern processors have multiple cores.

But if transactions execute concurrently, how is it that they appear to execute one a

8

2.2. TRANSACTIONS

time? For instance, in the example in Figure 2.2 we do not see any measures being taken

to ensure the serializable semantics. Indeed, the developer only needs to specify what
should be atomic—the transactions—and is spared from specifying how to achieve the

desired atomicity. The system will ensure serializability automatically under the hood.

This approach greatly simplifies the developer’s job, and stands in stark contrast to the

typical approach of using explicit locking.

To transparently achieve serializable semantics, the system runs a concurrency control

protocol [11] that kicks in during the transactional API calls. The job of the concurrency

control protocol is to ensure that transactions appear to execute one at a time. A central

part of achieving this illusion is making sure that a transaction that commits successfully

did not experience any interference from other concurrent transactions. In the example

in Figure 2.2, this means that the stock value should not change from the moment the

transaction observes it
(
read(stock)

)
until the transaction commits. There are various con-

currency control protocols, but one can group them broadly in two families: pessimistic

or optimistic.

Pessimistic protocols follow a cautious route, and take measures to ensure that in-

terference does not happen. In our example, an example of a pessimistic approach is

for the transaction to acquire a read lock when it observes the stock value, preventing

any other transaction from modifying the stock value until the transaction commits—at

which point it releases the lock. [24] The optimistic family of protocols take the opposite

approach: they assume interference will be rare, and thus allow transactions to execute

without synchronization until they attempt to commit—in other words, transactions exe-

cute speculatively. When a transaction attempts to commit, the system atomically verifies

if the transaction’s speculative execution is still valid, and if so, commits the transaction.

If not, the system aborts the transaction, which can then be retried. In our example, when

the transaction issues the commit operation, the system verifies whether the stock value

that the transaction observed during its speculative execution remains unchanged before

allowing the transaction to commit successfully. If the stock value remains unchanged,

the system commits the transaction. Otherwise, the system aborts the transaction.

The system’s concurrency control protocol, regardless of whether it is pessimistic or

optimistic, ensures that transactions are serializable. This means that transactions appear

to execute one a time in some order. Any order is deemed correct. The idea in this

dissertation’s research is to execute operations concurrently as transactions under the

state machine replication model. However, if the system only ensures that transactions

appear to execute one a time in some order, it is possible for the replicas to execute

transactions in different orders. However, we have already established (in the previous

Section) that each replica must execute the requests (transactions) in the same order

to respect the state machine replication approach. In this dissertation’s research we

rework the concurrency control protocol to ensure that transactions, despite executing

concurrently, respect a particular serial order: the order that the replicas agreed upon.

In the research we describe in this dissertation, we also rethink the transactional API.

9

CHAPTER 2. PRELIMINARIES

The system’s perception of what the transaction does is limited by the information that

passes through the API calls, which can lead the system to conservatively prevent con-

currency. Take the example in Figure 2.2 again, assuming that there is enough stock. A

fair description of its transaction is that it “decrements the amount in stock if there is

enough stock available.” However, during the transaction’s execution what the system

sees is that the transaction observes a specific stock value and subsequently modifies the

stock. The system is unaware, for instance, that the new stock value is a function of

the previous value, nor that the transaction is only really interested in checking whether

there is enough stock. As a consequence, the system prevents the concurrent execution

of transactions that attempt to buy the same item, regardless of whether there is enough

stock to allow all the transactions to concurrently buy the item. For example, if a trans-

action observes the stock value as five, it computes the new stock value to be four. The

new value, four, only makes sense in a state where the current value is five, so for this

transaction to commit other transactions must not modify the stock value.

Our research enhances the transactional API to allow the application to provide more

information to the system, so that it can reap the available concurrency as much as

possible. For example, the enhanced API allows the transaction to convey to the system

that it only requires that there is enough stock, i.e. it is greater than zero, and to convey to

the system how the new stock value is computed based on the previous stock value. This

allows the system to successfully commit transactions that concurrently buy the same

item, as long as there is enough stock.

10

C
h
a
p
t
e
r

3
Pot: Preordered transactions

In this chapter we present Preordered transactions (Pot), a methodology to achieve deter-

ministic concurrent execution of transactions. We describe how to apply Pot’s method-

ology to optimistic concurrency control using two key techniques: ordered commits and

transaction modes. Finally, we evaluate our implementations of two Pot TM prototypes

using STAMP [50], STMBench7 [31], and microbenchmarks.

The chapter is organized as follows. We start by introducing and motivating the

need for Pot in Section 3.1. Section 3.2 presents Pot’s design, namely its sequencer (Sec-

tion 3.2.1) and concurrency control protocol (Section 3.2.2). Section 3.3 highlights the

challenges and details our implementation of Pot in an STM and an off-the-shelf HTM

system. We conclude in Section 3.4, which reports an experimental evaluation of Pot.

3.1 Introduction

Serializable transactions [24, 55] are a viable mechanism to synchronize concurrent ac-

cesses to shared state due to an interesting trade-off between ease of use and performance.

Programmers specify which portions of code should be atomic (transactions) without wor-

rying how to enforce such atomicity. A concurrency control protocol enforces atomicity

at runtime, providing the illusion that transactions execute one at a time.

The transactional model has been widely used in databases, where transactions are

the system’s units of work. In the last decade, the transactional model has found its

way to general-purpose programming in the form of Transactional Memory (TM) [35,

62]. TM is becoming mainstream, as processors from Intel and IBM already provide sup-

port for HTM [14, 72], the GCC has experimental support for TM (using either STM

or HTM) [27], and there is ongoing work in integrating TM language constructs in

C/C++ [12].

11

CHAPTER 3. POT: PREORDERED TRANSACTIONS

1 Thread 1
2 if test it then
3

4 assume it

1 Thread 2
2

3 change it
4

a Atomicity violation.

1 Thread 1
2

3 initialize it
4

1 Thread 2
2 use it
3

4

b Order violation.

Figure 3.1: Example of the most common concurrency bugs [Lu et al. 2008], with transac-
tions in italic. In (a) the assumption of a predicate is not atomic with its test. In (b) thread 2
uses a resource before thread 1 initializes it.

Although the transactional model provides a simple programming model, it inherits

the nondeterministic behavior of concurrent execution. Specifically, the order in which

transactions appear to execute depends on the nondeterministic interleavings of the

threads that execute the transactions at runtime, so different executions of the same

program with the same inputs can yield different outcomes. In this chapter we focus

on building a transactional system that ensures that data race-free programs execute

according to a deterministic transaction serialization order.1

Having a system that ensures a deterministic transaction serialization order has at

least two benefits: (1) we can execute multiple replicas of a multithreaded application

for fault tolerance [58], and (2) it helps debugging, or prevents, the most common concur-

rency bugs [46]. Executing multiple replicas for fault tolerance relies on the assumption

that correct replicas always yield the same outputs. With a deterministic transaction

serialization order this assumption is not broken under multithreaded execution, so repli-

cas do not need to fall back to sequential execution to ensure correctness. Consequently,

replicas potentially make better use of the available resources such as multicore proces-

sors. Regarding concurrency bugs, Figure 3.1 depicts the two most common concurrency

bugs (amounting to 97% of the non-deadlock bugs) found in a study of 4 real-world appli-

cations [46], with transactions highlighted in italic. Figure 3.1a shows an example of an

atomicity violation. Thread 1 tests some predicate, and then executes code that assumes

that it is true. Thread 2 executes code that changes the predicate’s outcome. If thread 2

interleaves thread 1 after the predicate test, but before the “then branch,” thread 1 will

execute code that assumes the predicate is true while it is not, which can result in unex-

pected behavior. Figure 3.1b shows an example of an order violation. Thread 1 initializes

some resource that thread 2 uses, but at runtime thread 2 attempts to use the resource

before thread 1 initializes it. These concurrency errors are sensitive to thread interleav-

ings, and in the particular case of TM, only manifest themselves in particular transaction

serialization orders. Since the transaction serialization order is nondeterministic, the

errors are difficult to reproduce and debug. With a deterministic transaction serialization

order, the aforementioned errors either manifest themselves in every execution, or not at

all, greatly simplifying the developer’s work.

1This property is known as weak determinism [53].

12

3.2. DESIGN

In this chapter we present Pot, a system that enables deterministic execution of trans-

actions.

Pot uses the concept of preordered transactions as a principled approach to ensure a

deterministic transaction serialization order. While traditional transactions provide the

illusion of executing one at a time in any order, preordered transactions appear to execute

in a specific, predefined, order.

To realize preordered transactions, Pot must address two key challenges: (1) guar-

antee that the predefined serial order is the same across executions, and (2) that the

outcome of executing transactions is as if they executed serially in the predefined order.

To ensure (1), Pot’s sequencer assigns a sequence number to each new transaction. The

sequence number reflects the transaction’s place in a deterministic transaction serializa-

tion order. To ensure (2) efficiently, Pot executes transactions concurrently and relies on

a new concurrency control protocol that guarantees that the outcome is equivalent to

the order defined by the sequencer. Pot’s concurrency control protocol relies on two key

techniques: ordered commits and transaction modes. Ordered commits force transactions

to commit according to the predefined serialization order. Transaction modes leverage

the key insight that, at any given time, there is always one transaction that is “the next

allowed to commit.” Pot’s concurrency control protocol executes that particular transac-

tion as fast as possible, with virtually no concurrency control overhead (fast mode) while

executing the other transactions using regular mechanisms to maintain correctness in the

presence of the fast-mode transaction (speculative mode).

We built two Pot prototypes, one using STM and another using off-the-shelf HTM,

and evaluate them with the popular STAMP benchmark suite [50] and STMBench7 [31].

Our Pot STM implementation clearly outperforms the state of the art in STM-based de-

terministic execution while simultaneously achieving deterministic execution with low

overhead, providing promising evidence that using both STM and determinism to ease

multithreaded programming may be practical. To the best of our knowledge, Pot also ad-

vances the state of the art by enabling deterministic execution of off-the-shelf HTM-based

multithreaded programs for the first time.

3.2 Design

The standard Transactional Memory (TM) correctness criterion is opacity [30]. Broadly

speaking, opacity is serializability [55] with the additional guarantee that transactions

never observe inconsistent states, even if they would eventually abort. Traditional concur-

rency control protocols used to implement opaque transactions, such as Two-phase Lock-

ing [11] or Optimistic Concurrency Control [40], embrace opacity’s flexibility and per-

form two tasks simultaneously while transactions are executing: (a) they compute the

transaction serialization order (ordering), and (b) control the concurrent execution of

transactions to respect that serialization order (concurrency control). Since ordering is

intertwined with concurrency control, the final transaction serialization order depends

13

CHAPTER 3. POT: PREORDERED TRANSACTIONS

on the nondeterministic interleavings that occur at runtime between transactions and

thus varies from one execution to the next. We refer to this execution model as traditional
transactions.

With preordered transactions the serialization order is independent of the interleavings

that may occur between transactions because, unlike traditional transactions, preordered

transactions already have a place in the serialization order before they are executed. Con-

ceptually, preordered transactions have a two-phase execution model: (1) the ordering
phase which defines every transactions’ place in the serialization order, and (2) the exe-
cution phase where transactions execute concurrently in such a way that the outcome is

equivalent to their sequential execution in the predefined order. Traditional concurrency

control protocols cannot be used in the execution phase, because they implement both

ordering and concurrency control. This chapter proposes a novel concurrency control

protocol that can be used in the execution phase (Section 3.2.2).

3.2.1 Ordering phase: Pot sequencer

A consequence of decoupling ordering and concurrency control is that both the ordering

and execution phase, where concurrency control occurs, can be performed separately

by two different components. Ordering is performed by a sequencer component that

computes some total order over the set of all transactions.

In the context of state machine replication, the sequencer maps directly to the agree-

ment phase, which already totally orders transactions.

In the context of a general-purpose TM program, at first glance it seems that the se-

quencer needs to know which transactions will execute ahead of time, but we can devise

generic sequencers that compute the transaction order on-the-fly by defining an order

over the application threads and deriving the transaction order from it. For example, take

threads t and u, with transactions (a;b;c) and (d;e;f) in their code, respectively. Consider

a sequencer that orders threads using a round-robin scheme, i.e. (t;u). This sequencer

defines the transaction order (a;d;b;e;c;f). Now consider that thread t only executes

transaction c depending on some condition. The condition may be defined over global

state, thread-private state, or a mixture of both. If the condition is over global state,

the respective state must have been read within a transaction, e.g. transaction b, so the

condition is always tested over the state resulting from the order (a;d;b), yielding a deter-

ministic result.2 If thread t decides not to execute transaction c the order is (a;d;b;e;f).

If thread t’s logic is “execute c or g” instead, the order is (a;d;b;e;g;f).

The only requirement of a generic sequencer that derives the transaction order from

the thread order is that the events of starting and stopping threads must be processed

deterministically by the sequencer with respect to the transaction order. To do so, since

transactions appear to execute in a deterministic order, Pot treats thread start/stop events

2Assuming the only source of nondeterminism is the transaction serialization order. Tech-
niques to deal with other sources, e.g. randomness, are complementary to this work.

14

3.2. DESIGN

as if they are transactions. Take threads t and u, with transactions (a;b;c) and (d;e;f),

respectively, where transaction b is the creation of a new thread v with transactions (g;h).

If we organize threads in a tree where the main thread is the root, the remaining threads

are children of the thread that spawned them, and let the tree’s post-order traversal specify

the thread order, a round-robin sequencer defines the transaction order (a;d;b;e;g;c;f ;h).

It is also possible to use application-specific sequencers. For example, we may record

the transaction commit order in a nondeterministic execution and then feed it to a se-

quencer to replay the recorded execution. We can also have sequencers that explicitly

define a transaction order, e.g. (a;b;c;d;e;f), but these need to take care because if a

thread decides not to execute a transaction in the order then the program would hang

waiting for it to execute. (We can detect this situation and abort the application with an

error.)

This design for a TM sequencer works best for workloads in which threads perform

transactions regularly. Optimizing for workloads with very heterogeneous thread behav-

iors is an open problem left for future work.

3.2.2 Execution phase: Pot Concurrency Control

Transactions may execute once they go through the ordering phase. At the core of the

execution phase is a concurrency control protocol that guarantees equivalence to the se-

rialization order defined in the ordering phase. The straightforward way to implement

such concurrency control protocol is to simply execute transactions sequentially. How-

ever this approach is clearly suboptimal as it does not take advantage of the inherent

parallelism present in today’s multicore architectures.

This section describes Pot Concurrency Control (PCC), a new protocol that executes

transactions concurrently while guaranteeing equivalence to the serial order defined by

the sequencer. We design PCC by modifying Optimistic Concurrency Control (OCC),

which works as follows. An OCC transaction consists of one, or more, speculative exe-

cutions. A speculative execution is divided into three phases: (1) the read phase, (2) the

validation phase, and (3) the write phase. The read phase records the objects read by

the transaction in the transaction’s read set. Write operations do not modify the shared

state; instead the transaction defers its updates and logs them in its write set. Therefore

locations that are both read and modified occur in both the read and the write sets. After

the read phase, the transaction undergoes a validation phase where it checks whether

any concurrently committed transaction’s updates overlap with its read set. If so the

transaction is aborted to respect opacity, and can be retried; otherwise it proceeds to the

next phase. Finally, the transaction enters the write phase where it atomically updates all

objects in its write set with the values buffered during the read phase.

We have chosen OCC as the base for PCC because OCC is suitable for dynamic trans-

actions, i.e. transactions for which it is very difficult (or even impossible) to identify their

15

CHAPTER 3. POT: PREORDERED TRANSACTIONS

1 tx-begin(t)
2

3 tx-write(t, o, v)
4 deferred-write(o, v, Wt)

5 tx-read(t, o)
6 consistent-read(o, Rt , Wt)

or tx-abort

7 tx-commit(t)
8 atomically
9 if validate(Rt)

10 writeback(Wt)
11 else
12 tx-abort

a OCC.

1 tx-begin(t)
2 snt ← sn

3 tx-write(t, o, v)
4 deferred-update(o, v, Wt)

5 tx-read(t, o)
6 consistent-read(o, Rt , Wt)

or tx-abort

7 tx-commit(t)
8 wait until snc = pred(snt)
9 if validate(Rt)

10 writeback(Wt)
11 snc← snt
12 else
13 tx-abort

b Speculative PCC.

1 when snc = pred(snt)
2 if validate(Rt)
3 writeback(Wt)
4 else
5 tx-abort

6 tx-write(t, o, v)
7 direct-update(o, v)

8 tx-read(t, o)
9 direct-read(o)

10 tx-commit(t)
11 snc← snt

c Fast PCC.

Figure 3.2: Methodology to transform Optimistic Concurrency Control (OCC) into
Pot Concurrency Control (PCC). Figure 3.2a models a typical OCC transaction. snc rep-
resents the sequence number of the last committed transaction. snt, Rt and Wt represent
the sequence number, read set, and write set of transaction t, respectively.

read/write sets in advance. Dynamic transactions are common in general-purpose TM-

based programs due to aliasing and the unstructured nature of the heap. In fact, most

STM and all existing HTM concurrency control protocols are optimistic.

Next, we present PCC incrementally. First, we describe the baseline OCC protocol

in Section 3.2.2.1, and then present our methodology to transform the baseline OCC

protocol into PCC by applying two key techniques: ordered commits, in Section 3.2.2.2,

and transaction modes, in Section 3.2.2.3.

3.2.2.1 Baseline protocol

Consider the protocol depicted in Figure 3.2a, modeling a typical OCC scheme [20, 40].

The read phase occurs after txn_start and before either txn_commit or txn_abort, and

consists of invocations to txn_read and/or txn_write. Both the validation and write phase

occur during txn_commit.

Read phase. Write operations intending to update object o’s value to v, buffer the update

in Wt (Figure 3.2a, line 4). Read operations on an object o log the access in the transaction’s

read set Rt and return (a) the buffered value for o in the write set Wt, if existing, or (b) read

a value of o from the shared state consistent with the rest of the read set (line 6). If it

is not possible to read a consistent value the transaction aborts. For example, take two

objects x and y, both initially 0. Transaction t observes x = 0. Meanwhile, another

transaction commits and sets both x and y to 1. If transaction t attempts to read y it can

either return 0 or abort, but it must never return 1, because x = 0 and y = 1 is not possible

under opacity.

16

3.2. DESIGN

Validation phase. The validation phase iterates the read set and checks that the observed

values are still coherent, i.e., all the observed values remain the same (line 9).

Write phase. If validation is successful then transaction t enters its write phase and di-

rectly updates the objects in its write set with the values buffered during the read phase,

creating a new version of the shared state (line 10).

Correctness. This protocol guarantees opacity mainly due to the atomicity of the validation

and write phases (lines 8–12). If the validation phase is successful then none of the

read objects have been modified since the transaction’s read phase. This means that

the read phase happens in the same logical instant of the validation phase. Since the

validation and write phase occur atomically, the write phase also happens in the same

logical instant of the read phase. Therefore, transaction t appears to have been the

sole transaction executing. Hence t is serialized after all the transactions that wrote the

values t observed, and before any transactions that eventually observe the values t wrote.

3.2.2.2 Ordered commits

The OCC protocol described in the previous section provides the illusion that transactions

execute one at a time. However, the order in which transactions appear to execute is not

deterministic because it depends on the interleavings between transactions’ operations

that will occur at runtime.

To adhere to the serial order predefined in the ordering phase, we make two key

observations: (a) OCC transactions only modify shared state during their write phase,

and (b) each transactions’ place in the serialization order depends on the relative order

in which each transaction (atomically) performs its validation and write phase. If we

restrict transactions to execute their validation and write phases in the order defined

by the sequencer, we guarantee that the outcome is equivalent to the respective ordered

sequential execution.

To transform the OCC protocol described in the previous section into PCC, we start

by updating the txn_start operation to have an additional parameter, a sequence num-

ber sn, that reflects the order of transaction t in the serialization order defined by the

sequencer (Figure 3.2b, line 2). Transaction t is preordered after the transaction with

sequence number predecessor(snt) and before the transaction with sequence number

successor(snt). We force transactions to commit according to the predefined order by

inserting a conditional wait in txn_commit. When transaction t wants to commit, it waits

until the transaction with sequence number predecessor(snt) commits (line 8). To this

end, transactions communicate via a snc object whose value is the sequence number of

the last committed transaction (line 11).

Correctness. In the original OCC protocol correctness is guaranteed by atomically exe-

cuting both the validation and write phase. However, the order in which active transac-

tions execute those phases depends on their nondeterministic multithreaded execution.

To conform with the predefined order the atomic block is replaced with a conditional

17

CHAPTER 3. POT: PREORDERED TRANSACTIONS

wait that restricts the order in which transactions are allowed to commit. Specifically, a

transaction t that finishes its read phase is only allowed to perform the validation and

write phases after the transaction that directly precedes t in the serial order has com-

pleted. Since transactions are totally ordered, only one transaction at a time can escape

the conditional waiting on line 8. Correctness is maintained because the conditional wait

also guarantees atomicity. The atomicity scope is between the wait condition (line 8) and

updating snc (line 11).

3.2.2.3 Transaction modes

OCC employs a set of techniques to guarantee correctness, such as read and write sets,

read set validation and deferred updates. With OCC all transactions are executed using

the aforementioned techniques because any transaction may become the next transaction

in the serialization order, which is being defined as transactions execute. Using such

techniques imposes additional overhead when compared with an execution without any

concurrency control.

However, unlike in OCC, in PCC the serialization order is predefined. Since PCC

restricts the order in which transactions commit, they may now have to wait for their

turn to commit, leading to a loss of parallelism. To mitigate this loss of parallelism, we

make the key observation that at any moment there is always a single transaction, which

we refer to as fast, which is the next transaction that is allowed to commit. We exploit

the fact that the fast transaction is the next transaction allowed to commit to execute it

without most concurrency control overheads. Hence, we distinguish between two types

of transactions: fast and speculative. We describe both fast and speculative modes below.

Fast transaction. A fast transaction t is the only active transaction whose predecessors are

all completed. A fast transaction is the next, and only, transaction allowed to commit. It

can be executed more efficiently by merging the read and write phases and completely re-

moving the validation phase, thus eschewing most of the traditional OCC techniques and

associated overhead. Fast transactions execute according to the protocol in Figure 3.2c.

Read phase. Write operations no longer perform deferred updates; instead they use di-

rect updates (line 7). Since updates are installed in place during the now combined

read-write phase, read operations are reduced to simply reading the current object’s

value with no additional consistency checks or read set tracking (line 9).

Validation phase. Fast transactions are guaranteed to execute to completion without inter-

ference from other active transactions, thus the validation phase is unnecessary. (Transac-

tions that switch on the fly to fast mode need to validate the speculative execution done

up to that point; we elaborate below.)

Write phase. The write phase is implicitly executed during the read phase due to the

direct update strategy, therefore the “write back” step is also completely eliminated.

Correctness. Our argument for correctness is the same as for the ordered commits tech-

nique. However a fast transaction does not speculatively perform the read phase and wait

18

3.3. IMPLEMENTATION

for its turn to transition to the validation and write phases. Instead the fast transaction

executes the now combined read-write phase when it is already its turn to commit. A

fast transaction is effectively given exclusive write permission to the shared state until it

commits, so merging the read and write phases by replacing deferred with direct updates,

and removing the validation phase, does not affect correctness.

Speculative transaction. A transaction whose turn to commit has not yet come is a spec-

ulative transaction, and it follows the ordered commit protocol (Section 3.2.2.2).

Live promotion. Since fast transactions bypass most concurrency control overhead, a

live speculative transaction t, i.e. still executing its read phase, immediately switches to

fast mode as soon as snc = predecessor(snt) holds (line 1). Upon a live promotion, transac-

tion t eagerly validates the portion of the read phase it has executed so far (line 2). If the

validation is successful then t applies any pending writes to the shared state, without up-

dating snc, and executes its remaining operations in fast mode (line 3). Otherwise t aborts

and retries in fast mode (line 5).

Explicit aborts. If the transaction API has an explicit txn_abort operation to abort the cur-

rent transaction, fast transactions must keep the write set as an undo log, i.e. remember

the values they overwrite to restore them upon abort. The txn_abort operation may allow

the developer to specify a “no retry” policy, i.e. abort the transaction without retrying

it afterwards. If so, these “no retry” aborts must comply with the predefined order as

they are equivalent to committing the current transaction as read only. This is done by

processing a “no retry” explicit abort as a commit. For example, a speculative transaction

waits for its turn, validates its read set, and updates snc if validation is successful, or

retries if not. A fast transaction restores the write set (undo log) and updates snc.

Multiple simultaneous fast transactions. Multiple fast transactions can safely execute

in parallel given additional knowledge about transactions. A string of successive trans-

actions that do not have read-write nor write-write conflicts between themselves can all

execute simultaneously as fast transactions, because the final outcome is independent of

the order in which they commit. To implement multiple simultaneous fast transactions

the runtime requires a compatibility matrix of all transactions. When a transaction be-

comes fast it publishes its information: transaction identifier, sequence number, and that

it is active. Using this scheme, a transaction knows it can switch to fast mode if: (1) its

predecessor is already fast (active or finished), and (2) it is compatible with all currently

active fast transactions. If both conditions hold, the transaction can switch to fast mode.

3.3 Implementation

We implemented a Pot prototype consisting of an implementation of a sequencer and two

concurrency control protocols: one where transactions execute using STM and another

where transactions execute using HTM. Our sequencer implementation is generic and

derives the transaction order from a round-robin thread order (Section 3.2.1). Next, we

describe our STM (Section 3.3.1) and HTM (Section 3.3.2) implementations.

19

CHAPTER 3. POT: PREORDERED TRANSACTIONS

1 tm-begin(t)
2 rvt ← gv
3 acquire-fence

4 tm-write(t, addr, val)
5 add (addr,val) to Wt

6 tm-read(t, addr)
7 if addr ∈Wt
8 return Wt(addr)

9 l1← vlock(addr)
10 acquire-fence
11 value← read(addr)
12 acquire-fence
13 l2← vlock(addr)
14 if l1 > rvt ∨ l1 , l2
15 tm-abort

16 add addr to Rt
17 return value

18 tm-commit(t)
19 for (addr,−) ∈Wt do
20 if try-lock(addr) fails
21 tm-abort

22 atomically
23 gv← gv + 2
24 wvt ← gv

25 for addr ∈ Rt do
26 l← vlock(addr)
27 if addr ∈Wt
28 if version(l) > rvt
29 tm-abort

30 else if l > rvt
31 tm-abort

32 for (addr,val) ∈Wt do
33 write(addr,val)

34 release-fence
35 for (addr,−) ∈Wt do
36 set-and-unlock(addr,wvt)

a TL2.

1 tm-begin(t)
2 rvt ← gv
3 acquire-fence
4 if first attempt
5 wvt ← seq-no(tid)

6 tm-write(t, addr, val)
7 add (addr,val) to Wt

8 tm-read(t, addr)
9 if addr ∈Wt

10 return Wt(addr)

11 v1← version(addr)
12 acquire-fence
13 value← read(addr)
14 acquire-fence
15 v2← version(addr)
16 if v1 > rvt ∨ v1 , v2
17 tm-abort

18 add addr to Rt
19 return value

20 tm-commit(t)
21 wait until gv = wvt − 1
22 acquire-fence
23 for addr ∈ Rt do
24 v← version(addr)
25 if v > rvt
26 tm-abort

27 for (addr,val) ∈Wt do
28 set-version(addr,wvt)
29 release-fence
30 write(addr,val)

31 release-fence
32 gv← wvt

b Speculative PCC.

1 when gv = wvt − 1
2 acquire-fence
3 for addr ∈ Rt do
4 v← version(addr)
5 if v > rvt
6 tm-abort

7 for (addr,val) ∈Wt do
8 set-version(addr,wvt)
9 release-fence

10 write(addr,val)

11 tm-write(t, addr, val)
12 set-version(addr,wvt)
13 release-fence
14 write(addr,val)

15 tm-read(t, addr)
16 return read(addr)

17 tm-commit(t)
18 release-fence
19 gv← wvt

c Fast PCC.

Figure 3.3: Transformation of TL2 into Pot Concurrency Control (PCC). Figure 3.3a
shows the original TL2 transaction. Figures 3.3b and 3.3c show a PCC transaction in
speculative and fast mode, respectively.

3.3.1 Software Transactional Memory

The ordered commits technique ensures that only one transaction executes its commit

procedure at a time. In NOrec [16] commits are also sequential. While this similarity

makes NOrec a potential baseline for Pot, NOrec eschews per-memory location metadata

and uses value-based validation instead. Consequently, speculative transactions are un-

able to identify which particular memory location is written when the fast transaction

performs a write. As such, implementing fast transactions while still preserving opacity

20

3.3. IMPLEMENTATION

would require that, every time a fast transaction performs a write, all speculative trans-

actions would have to validate their entire read set, regardless of which specific memory

location was written by the fast transaction. Instead, our Pot STM protocol is based on

TL2 [20], a popular STM that uses per-memory location metadata, so that speculative

transactions do not have to perform incremental validation on reads.

Baseline STM transaction. In a nutshell, TL2 works as follows. There is a global version

and a table of versioned locks, i.e., a version and a lock bit implemented as a single

value—vlocks for short. Odd versions are locked and even versions are unlocked. Each

memory address is mapped to one vlock. When a transaction starts, it samples the global

version gv to rvt and performs an acquire fence (Figure 3.3a, lines 2–3). The transaction

can safely read any value whose version is less than or equal to its rvt sampling. The

fence with acquire semantics ensures that this transaction observes all the memory writes

performed by the transaction that updated gv’s value to rvt. Write operations are buffered

in the write set (line 5). Read operations return the value of a buffered write if there is

any (line 7–8). Otherwise, they perform a consistent read by: (1) reading the address’

vlock to v1 (line 9), (2) performing an acquire fence (line 10), (3) reading the memory

address (line 11), (4) performing another acquire fence (line 12), and (5) reading the vlock

again to v2 (line 13). The first fence ensures that the memory address value is at least as

recent as v1. (If v1 is 42, then the value read has version 42 or newer.) The second fence

ensures that if the value is newer than v1, then v2 is at least as recent as the value’s version.

(If the value read has version 43, v2 is 43 or newer.) If v1 is not locked, and v1 ≤ rvt, and

v1 = v2, then the read successfully returns a consistent value; otherwise, the transaction

aborts (lines 14–17).

The commit operation locks every address in the write set by performing a compare-

and-swap on their vlocks. If any of the compare-and-swap operations fails, then the

transaction releases any acquired locks and aborts (lines 19–21). After successfully ac-

quiring the vlocks, the transaction performs an atomic add-and-fetch by 2 on gv and

stores gv’s new value in wvt (line 22). Then, the transaction validates its read set by

checking whether all memory addresses read are unlocked and their version is still com-

patible with rvt. If any check fails then the transaction restores any acquired locks and

aborts (lines 25–31). Note that the atomic add-and-fetch operation ensures that: (1) any

other transaction that starts meanwhile and observes gv = wvt will at least observe all the

write set vlocks as acquired, and (2) if any transactions committed since this transaction

started, i.e. wvt > rvt + 2, and wrote to a memory address read by this transaction, then

the read set validation will observe vlocks as locked or with a version newer than rvt.

At this point the transaction successfully commits. It writes back any buffered writes,

performs a release fence, and unlocks the write set, setting every vlock to wvt. The

release fence ensures that if any transaction observes a vlock with version wvt then it also

observes the value written by the transaction.

Speculative STM transaction. To implement PCC, we leverage the fact that TL2 uses

a global version and retrofit sequence numbers directly as versions. Thus, transactions

21

CHAPTER 3. POT: PREORDERED TRANSACTIONS

communicate the commit order via gv. A consequence of ordered commits is that we no

longer require locks, just versions, as they were only needed due to concurrent commits.

When a transaction starts for the first time, it requests its sequence number wvt from

the sequencer by supplying the thread’s identifier tid (Figure 3.3b, lines 4–5). Read oper-

ations are similar to TL2 except that we no longer test if the address is locked (line 16).

When the transaction attempts to commit, if necessary it waits until gv = wvt − 1 (line 21).

Once gv = wvt − 1, we perform an acquire fence that ensures that the following read set

validation observes the newest version of the addresses read (line 23–26). In the write

back step, we first update the address’ version, perform a release fence, and then write the

new value (lines 27–30). As discussed before, the release fence ensures that if any trans-

action observes the written value, it also observes the new version number. Finally, the

transaction updates gv, signaling the next transaction that it is its turn to commit (line 32).

The update of gv is preceded by a release fence to ensure that all transactions that see the

new value of gv will also see the new values for the objects written in the write back.

Fast STM transaction. The fast mode write operation is equivalent to the write back step

of a speculative transaction, i.e. updates the version number, performs a release fence, and

writes the new value (Figure 3.3c, lines 12–14). The read operation is reduced to a regular

load from memory (line 16), and the commit operation simply updates gv (line 19).

Live promotion. A speculative STM transaction t changes to fast on the fly when it detects

that it is its turn, i.e. gv = wvt − 1 (Figure 3.3c, lines 1–10). In our implementation we

check whether the condition holds whenever the speculative transaction begins, reads, or

writes.

3.3.2 Hardware Transactional Memory

Implementing PCC in HTM poses unique challenges when compared with an STM im-

plementation. Existing HTMs use the cache to maintain the read and write set, and

rely on the cache coherence protocol to detect conflicts. HTMs are also best effort, i.e.,

hardware transactions are not guaranteed to eventually commit, even in the absence of

conflicts, be it because the transaction’s footprint exceeds the cache capacity, or due to

the execution of an illegal instruction, an interrupt, a page fault, etc. Therefore, we must

always provide a software fallback to guarantee progress. These characteristics pose three

challenges, namely: (a) how to ensure that transactions eventually progress, (b) how to

implement ordered commits without inducing false conflicts, and (c) how to implement

fast transactions.

In our prototype we ensure progress using the most common fallback that achieves

opacity: resorting to a global lock. Every time a transaction acquires the global lock, all

hardware transactions abort and only retry when the lock is released.

In HTM, the commit operation is implemented entirely in hardware. This poses a

challenge on how to implement ordered commits because we introduce conflicts if trans-

actions signal each other whose turn it is to commit using a shared variable. For example,

22

3.3. IMPLEMENTATION

1 tm-begin(t)
2 if first attempt
3 patht ← HW
4 triest ← 10

5 wait while locked(gl)
6 tbegin
7 if locked(gl)
8 tm-abort

9 execute app. code

10 tm-abort(t)
11 if persistent
12 triest ← 0
13 else
14 triest ← triest − 1

15 if triest = 0
16 lock(gl)
17 patht ← SW
18 execute app. code

19 tm-commit(t)
20 if patht = HW
21 tcommit
22 else
23 unlock(gl)

a HTM.

1 tm-begin(t)
2 if first attempt
3 patht ← HW
4 triest ← 10
5 snt ← seq-no(tid)

6 wait while locked(gl)
7 if snc = snt − 1
8 tbegin(ROT)
9 switch to fast mode

10 else
11 sn← snc
12 tbegin
13 if locked(gl)
14 tm-abort

15 execute app. code

16 tm-abort(t)
17 if persistent
18 wait until snc = snt − 1
19 else
20 wait until snc > sn

21 tm-commit(t)
22 tsuspend
23 wait until snc = snt − 1
24 tresume
25 tcommit
26 snc← snt

b Speculative PCC.

1 tm-begin(t)
2 tbegin(ROT)
3 execute app. code

4 tm-abort(t)
5 if persistent
6 triest ← 0
7 else
8 triest ← triest − 1

9 if triest = 0
10 lock(gl)
11 patht ← SW
12 execute app. code

13 tm-commit(t)
14 if patht = HW
15 tcommit
16 else
17 unlock(gl)

18 snc← snt

c Fast PCC.

Figure 3.4: Transformation of Hardware Transactional Memory (HTM) into Pot Con-
currency Control (PCC). Figure 3.4a shows the original HTM transaction. Fig-
ures 3.4b and 3.4c show a PCC transaction in speculative and fast mode, respectively.

imagine two non-conflicting transactions t1 and t2, serialized in that order. Transac-

tion t2 attempts to commit before t1. It reads the commit-order variable, snc, and observes

that it is still not its turn so it waits, e.g., because t2 can only commit when snc = 1. When

transaction t1 commits it sets snc = 1, triggering a conflict in t2 because it observed a (now)

stale value. Implementing fast transactions is also challenging because all concurrency

control is performed by the hardware.

To implement our prototype we looked at the existing HTMs from Intel [72] and

IBM [14]. To implement ordered commits without inducing false aborts we require the

possibility to perform non-transactional accesses, i.e. that do not trigger transactional

conflicts. Unfortunately, Intel provides no support for non-transactional accesses. How-

ever, IBM’s HTM has two instructions, tsuspend and tresume, that allow the possibility

to suspend, and resume, transactional execution inside a hardware transaction. (While

in suspended mode accesses are performed non-transactionally.)

IBM’s HTM also provides a special kind of transaction called Rollback-only Transac-

tion (ROT). According to IBM, ROTs are intended to be used for single thread algorithmic

23

CHAPTER 3. POT: PREORDERED TRANSACTIONS

speculation [14]. For this reason, ROTs also buffer transactional writes in the cache but do

not maintain a read set. Furthermore, ROTs do not observe buffered transactional writes

from other transactions and all writes performed by a ROT become visible to other trans-

actions atomically, making them a prime choice to implement fast transactions. However,

note that ROTs may nevertheless abort due to write-write conflicts with other concurrent

transactions. For these reasons we implemented our prototype on IBM’s HTM. It is still

possible to implement Pot with Intel’s HTM, albeit with ordered commits inducing false

aborts and fast transactions being regular transactions.

Baseline HTM transaction. The relevant IBM’s HTM instructions are tbegin and tcom-

mit, to start and commit a hardware transaction, respectively. We initialize two impor-

tant variables, patht and triest, when the application starts a transaction, by invoking our

usual txn_start operation. patht is either HW or SW depending on whether the transac-

tion will execute as a hardware transaction or by software using the global lock fallback.

triest holds the number of remaining attempts to execute the transaction in hardware

until we fallback to software (Figure 3.4a, lines 2–4). (We retry 10 times like in GCC’s

experimental implementation.) If there is an ongoing transaction executing in software,

we wait until the global lock is free, otherwise the hardware transaction may observe an

inconsistent state and violate opacity (line 5). After the lock is free we start a hardware

transaction by issuing the tbegin instruction (line 6). From this point on, every memory

access is performed transactionally. Finally, we subscribe the global lock by checking if

it is locked before proceeding with the actual application code (lines 7–8). By checking

if the lock is taken it becomes part of the transaction’s read set, so if any transaction falls

back to software, any active hardware transaction is immediately aborted.

Committing a transaction depends on whether it executed in hardware (patht = HW)

or software (SW). We commit a hardware transaction using the tcommit instruction,

whereas for a software transaction we simply release the global lock (lines 20–23). Note

that the tcommit operation may still trigger an abort if the transaction fails to commit.

When a hardware transaction aborts, the control flow jumps to the txn_abort handler.

First, we check whether the abort is expected to be persistent by inspecting the IBM’s TEX-

ASR register, which contains several hints about the reason why the transaction aborted.

For example, an abort due to capacity restrictions is persistent. If the abort is persistent,

we fallback to software by acquiring the global lock and execute the transaction’s applica-

tion code (lines 11, 15–18). Otherwise, we decrement the number of remaining attempts

and control flow jumps back to txn_start.

Speculative HTM transaction. Like in our STM implementation, when a transaction

starts for the first time it requests a sequence number from the sequencer (Figure 3.4b,

line 5). After waiting until the global lock is free, we check whether it is the transaction’s

turn to commit. If so, we begin a ROT and switch to fast mode (lines 8–9). Otherwise, we

sample the sequencer number of the current fast transaction sn (we explain why shortly),

then begin a hardware transaction, and subscribe to the global lock (lines 11–13). To

24

3.4. EXPERIMENTAL EVALUATION

commit a transaction we: (1) issue the tsuspend instruction to suspend transactional exe-

cution (line 22), (2) wait for our turn to commit (line 23), (3) issue the tresume instruction

to resume transactional execution (line 24), and (4) issue the tcommit instruction to com-

mit (line 25). If the commit is successful we update the snc variable accordingly (line 26).

If the speculative transaction aborts due to persistent reasons, there is no point in

retrying the transaction until it is it’s turn to commit (line 18). Otherwise, we wait until

the concurrent fast transaction commits to retry the speculative transaction (line 20)—

recall that we sampled its sequence number sn when we started the aborted hardware

transaction (line 11). The rationale for waiting for the concurrent fast transaction to com-

mit is to minimize the chances of aborting the fast transaction via write-write conflicts.

Fast HTM transaction. As previously stated, fast transactions execute as ROTs. Unlike

regular hardware transactions, ROTs do not maintain a read set so they enjoy an increased

capacity limit that can be used exclusively for writes. Transactions that previously ex-

ceeded capacity constraints and had to fallback to software might now be able to commit

in hardware. This has the potential to increase the parallelism in the system because

falling back to software effectively “stops the world.”

Committing a fast transaction is essentially equivalent to the standard HTM transac-

tion with an additional update to snc (Figure 3.4c lines 14–18). If a fast transaction aborts

due to capacity restrictions it falls back to software (lines 5–6, 9–12).

Note that the hardware ensures that the fast transaction’s reads do not observe the

writes of concurrent speculative transactions. Moreover, if the fast transaction reads

a memory location that has been written by a concurrent speculative transaction, the

hardware aborts the speculative transaction immediately if it is executing, or when it

issues the tresume instruction if it is suspended.

3.4 Experimental evaluation

All experiments were run on a 10-core IBM POWER8 with a total of 128GB RAM. We

highlight the fact that the machine has a NUMA architecture. Particularly, the memory

latencies in our experiments are as follows: with 1 to 4 threads memory latencies are

uniform, while with 8 or more threads memory latencies increase up to 2×.

We evaluate Pot using the popular STAMP 0.9.10 benchmark suite [50] and STM-

Bench7 [31], using the parameters listed in Figure 3.5. STAMP consists of 8 representa-

tive applications from different domains, e.g. online transaction processing, iterative

clustering algorithms, and Delaunay mesh refinement (Vacation, KMeans, and Yada,

resp.) [50]. Some STAMP benchmarks, such as Labyrinth, KMeans, and Yada, output

non-deterministic results using STM. The benefits of Pot in these benchmarks are that

the computed Labyrinth’s solution, KMeans’ clusters, and Yada’s mesh, are always the

same across executions. STMBench7 is a more complex benchmark suggestive of CAD,

CAM or CASE software [31]. Results are the average of five runs. The GCC version is

Red Hat 5.1.1-4.

25

CHAPTER 3. POT: PREORDERED TRANSACTIONS

Benchmark Parameters

Bayes -v 32 -r 4096 -n 10 -p 40 -i 2 -e 8 -s 1

Genome -g 65536 -s 32 -n 16777216

Intruder -a 10 -l 2048 -n 8192 -s 1

Kmeans− -m 40 -n 40 -t 0.00001 -i inputs/random-n65536-d32-c16.txt

KMeans+ -m 15 -n 15 -t 0.00001 -i inputs/random-n65536-d32-c16.txt

Labyrinth -i inputs/random-x512-y512-z7-n512.txt

SSCA2 -s 20 -i 1.0 -u 1.0 -l 3 -p 3

Vacation− -n 8 -q 90 -u 98 -r 1048576 -t 4194304

Vacation+ -n 8 -q 10 -u 90 -r 1048576 -t 4194304

Yada -a 15 -i inputs/ttimeu1000000.2

STMBench7 (r) -t true -w r

STMBench7 (rw) -t true -w rw

STMBench7 (w) -t true -w w

Figure 3.5: Parameters used in STAMP and STMBench7.

3.4.1 Software Transactional Memory

In this section we evaluate our Pot STM prototype. We seek to answer the following

questions:

Are fast transactions effective? (Section 3.4.1.1.) Yes, they successfully reduce concur-

rency control overheads and execute faster than regular transactions. Our experiments

show that fast transactions already execute faster than regular transactions even when

they perform as little as 1 read and 1 write access, despite the addition work performed

regarding the sequencer and switching modes (Figure 3.6).

Does Pot ensure determinism efficiently? (Section 3.4.1.2.) We argue that it does. Our

experiments show that Pot ensures deterministic execution across all of STAMP’s bench-

marks with an average slowdown over nondeterministic execution of less than 2× (ge-

ometric mean of Figure 3.7), and it is ≈ 5× faster on average than the nondeterministic

baseline in STMBench7 (geometric mean of Figure 3.10).

Does Pot improve upon the state of the art? (Section 3.4.1.2.) Yes, Pot successfully

lowers the overheads of ensuring determinism when compared with DeSTM [56]. Our

experiments show that, when compared to DeSTM, Pot is up to ≈ 3× faster than DeSTM

on average across the STAMP benchmarks (geometric mean of Figure 3.7) and up to ≈ 9×
faster on average in STMBench7 (geometric mean of Figure 3.10), and scales better with

the number of threads (Figure 3.11 and 3.12).

3.4.1.1 Effectiveness of fast transactions

The fast transaction’s objective is to reduce concurrency control overheads in order to

mitigate the potential loss of parallelism introduced by ordered commits. To measure

how effective is the fast execution mode we executed a microbenchmark that consists of a

simple key-value data structure implemented with an array of counters. We use a single

thread, and vary the number of accesses performed by transactions, and the accesses’

read/write ratio.

26

3.4. EXPERIMENTAL EVALUATION

0 1 2 4 8 16 32 64
0
1
2
3
4
5
6
7
8
9

10
11

Number of accesses

×
fa

st
er

th
an

ST
M

tr
an

sa
ct

io
n 0% reads

50% reads
100% reads

Figure 3.6: Speedup achieved by a Pot fast transaction over the baseline STM transaction.

Figure 3.6 shows how much faster the Pot fast transaction protocol is than the base-

line STM transaction. Transactions with zero accesses consist of txn_begin immediately

followed by txn_commit. This allows us to measure the overhead imposed by the addi-

tional work performed by the sequencer, ordered commits, and transaction modes, which

is negligible. By increasing the number of accesses we observe that, as expected, fast

transactions perform increasingly better than the baseline. We also observe that write

operations contribute more to the achieved speedup. This is due to the fact that in the

baseline STM write operations impose overhead on reads because reads must query the

write set for possible buffered values. Write operations also impose overhead on the

commit operation due to the need to lock the write set, perform the write back, and

unlock the write set. Fast transactions bypass all these sources of overhead. However,

fast transactions do not achieve observable gains when transactions are read-only. This is

because read-only transactions in the baseline STM do not need to validate the read set at

commit time—they are serialized at begin time. Overall, fast transactions are successful

in minimizing concurrency control overheads, even for transactions that perform as little

as one read and one write.

3.4.1.2 Comparison with the state of the art

In this section we evaluate deterministic execution using Pot in the popular STAMP 0.9.10

benchmark suite [50], and STMBench7 [31]. We also compare Pot against DeSTM, a state

of the art system in deterministic execution of STM programs. (Please refer to section 6.1

for a more in-depth description of DeSTM and its comparison to Pot.) To perform an

apples-to-apples comparison, we implemented DeSTM in our own prototype.3 Both Pot

3DeSTM is not publicly available. We asked the authors for the source code via e-mail but got
no response.

27

CHAPTER 3. POT: PREORDERED TRANSACTIONS

and DeSTM are based on the same baseline STM protocol and use the exact same se-

quencer. We also implemented a deterministic and non-speculative solution based on a

global lock that transactions acquire according to the order defined by the sequencer, i.e.

transactions acquire a global lock at txn_begin and release it at txn_commit (PoGL, as in

Preordered Global Lock). The rationale is that PoGL is a “trivial” implementation of PCC

without any speculation. We show results for DeSTM, PoGL, ordered commits only (Pot−),

ordered commits and transaction modes (Pot∗), and ordered commits, transaction modes,

and live promotion (Pot).

Performance. Figure 3.7 quantifies the cost of deterministic multithreading when using

DeSTM, PoGL, and Pot, on STAMP. With it we seek to answer the following question:

“How much slower is the execution with x threads if we want determinism?” The Fig-

ure reports the execution time normalized to the baseline nondeterministic STM execu-

tion (y axis) of every benchmark of the STAMP suite, when executed with DeSTM, PoGL,

Pot− (ordered commits), Pot∗ (ordered commits and transaction modes) and Pot (ordered

commits, transaction modes, and live promotion) using from 2 to 16 threads (x axis).

In these plots lower is better, and values below 1 mean that the deterministic execu-

tion was faster than standard nondeterministic execution. Four observations stand out:

(a) the cost of ensuring determinism increases with the number of threads, (b) Pot outper-

forms DeSTM in all benchmarks, (c) Pot is at most ≈ 3× slower than the nondeterministic

baseline, while DeSTM suffers from a slowdown of up to ≈ 11×, (d) Pot is even always
faster than the baseline STM execution on Genome, and (e) although PoGL works well

in some workloads, Pot achieves the best of both worlds: Pot is comparable to PoGL on

the workloads PoGL works well, and considerably outperforms PoGL on the remaining

workloads (e.g. ≈ 2.5× on Intruder, ≈ 3× on Labyrinth and Vacation+, and ≈ 5× on

Vacation−).

The fact that the cost of ensuring determinism increases with the number of threads

is unsurprising; the probability of a transaction t attempting to commit before its turn

increases with the number of threads, particularly if there are transactions ordered be-

fore t that take longer than t. Pot’s ordered commits and transaction modes minimize

these situations to increase the probability of transactions not having to wait for their

turn to commit. Figure 3.8 supports this claim. It shows, for each benchmark/thread

combination, how much time DeSTM transactions “waste” to enforce determinism, on av-

erage, when compared to Pot. We can observe that in general DeSTM transactions spend

more time waiting for their turn to commit. Figure 3.9 shows two example scenarios that

highlight the differences between DeSTM and Pot. In DeSTM time is divided into rounds,

and in each round each thread executes one transaction. A transaction cannot start if

some transaction from the previous round has not finished yet (Figure 3.9a), and cannot

commit, even on its turn, if some transaction from the same round has not started yet (Fig-

ure 3.9b). In contrast, Pot realizes that rounds are not necessary to respect a predefined

serial order, so transactions never wait to start, nor to commit on their turn.

Pot also accelerates the execution of the next transaction to commit according to the

28

3.4. EXPERIMENTAL EVALUATION

E
xe

cu
ti

on
ti

m
e

no
rm

al
iz

ed
to

ST
M

ex
ec

u
ti

on

2 4 8 16
0
2
4
6
8

10
12

2.
01 2.
30

2.
17

2.
32

1.
10 1.
69

1.
21 1.
74

1.
23 1.

95

1.
58 2.

30

1.
08 1.
55

1.
46 2.
01

1.
23 1.
81

1.
54 2.

25

Bayes

DeSTM PoGL

2 4 8 16

1.
26

1.
03

1.
19 1.
77

0.
54

0.
66

0.
81 1.
11

0.
63

0.
53

0.
61

0.
82

0.
52

0.
48

0.
53

0.
58

0.
50

0.
42

0.
48

0.
58

Genome

Pot− Pot∗ Pot

2 4 8 16
0
2
4
6
8

10
12

1.
96 3.

59

5.
83

10
.6

6

0.
85 1.
34

3.
52 4.

57

1.
43 1.
91 2.
19

2.
16

1.
03 1.
32 2.

05

1.
81

1.
16 1.
56 1.
86

1.
82

Intruder

2 4 8 16

1.
31 1.
83 3.

05

8.
96

0.
75 1.
27 1.
69 2.

98

1.
05

1.
29

1.
38 2.

86

0.
83 1.
16

1.
09 2.

07

0.
85 1.
19

1.
43 2.

28

KMeans−

2 4 8 16
0
2
4
6
8

10
12

1.
49 1.
77 3.

64 4.
65

0.
68 1.
18 1.
57 1.
87

0.
93

1.
16 1.

95 2.
81

0.
81

0.
95

1.
18 1.
71

0.
72 1.
07 1.
54 1.
96

KMeans+

2 4 8 16

1.
92 3.

41

5.
74

8.
24

1.
67 3.

03

5.
04

7.
21

1.
12

1.
29 1.
60 2.

65

0.
97

1.
06

1.
29 2.

27

1.
12

1.
32 1.
72 2.

70

Labyrinth

2 4 8 16
0
2
4
6
8

10
12

1.
54 2.
15 2.
69 3.
19

1.
03 1.
34 1.
86 2.
34

0.
95 1.
42 2.
00 2.
38

0.
86 1.
15 1.
84 2.
29

0.
95 1.
39 1.
98 2.
39

SSCA2

2 4 8 16

1.
24 1.
53 1.
92 2.

84

0.
86 1.

66

4.
07

6.
31

1.
06

1.
18

1.
27

1.
44

0.
87

0.
94 1.
22

1.
24

0.
86

0.
99

1.
23

1.
39

Vacation−

2 4 8 16
0
2
4
6
8

10
12

1.
39 1.
93 2.
38 3.

92

0.
70 1.
20 2.

28 3.
08

1.
21 1.
60

1.
86 2.
18

1.
03 1.
34 1.
72

1.
93

0.
71

0.
84

0.
93

1.
04

Vacation+

2 4 8 16

1.
68 2.

92

5.
30

11
.1

3

0.
64 1.
10 2.

18 3.
32

1.
41 1.
97 2.

75 3.
35

1.
24 1.
67 2.

43

2.
63

0.
75 1.
13 1.
70 2.
16

Yada

Threads

Figure 3.7: How much slower is the execution of each STAMP benchmark with
x threads if we want determinism? The y axis measures the execution time using DeSTM,
PoGL (preordered global lock), Pot− (ordered commits), Pot∗ (ordered commits and
transaction modes), and Pot (ordered commits, transaction modes, and live promotion),
normalized to the nondeterministic execution using the baseline STM (lower is better).
− and + refer to the relative levels of contention in the configuration.

serial order. From Figure 3.6 we deduce that the benefits of the fast mode should be more

apparent in benchmarks with bigger transactions with higher write-to-read ratio, and/or

higher contention. Fast transactions (Pot∗) further improve performance over ordered

29

CHAPTER 3. POT: PREORDERED TRANSACTIONS

Benchmark Threads

2 4 8 16

Bayes 1.88× 1.03× 0.95× 0.68×
Genome 3.24× 3.99× 3.92× 3.24×
Intruder 2.92× 3.11× 2.19× 1.74×

Kmeans− 4.16× 2.54× 2.22× 1.68×
KMeans+ 3.62× 2.76× 1.97× 1.16×
Labyrinth 6.61× 5.31× 2.67× 0.77×

SSCA2 4.29× 1.62× 1.36× 1.34×
Vacation− 5.52× 4.01× 3.51× 3.60×
Vacation+ 5.91× 4.93× 4.41× 5.29×

Yada 3.00× 3.26× 2.23× 1.69×
STMBench7 (r) 2.90× 3.53× 2.34× 4.73×

STMBench7 (rw) 8.02× 5.96× 7.16× 7.82×
STMBench7 (w) 15.10× 11.77× 9.17× 11.31×

Figure 3.8: Time that DeSTM transactions spend waiting to enforce determinism com-
pared to Pot, using the STAMP and STMBench7 benchmarks. A value of 2×means that,
on average, DeSTM transactions spend 2×more time waiting for their turn (hence higher
is better for Pot).

DeSTM Pot

1
1

2

a DeSTM waits to start.
DeSTM Pot

1

2

2

b DeSTM waits to commit.

Thread execution
Speculative transaction

Fast transaction
Signal next

Waiting

N DeSTM round

Figure 3.9: Examples of the difference between DeSTM and Pot. In DeSTM time is divided
into rounds, and in each round each thread executes one transaction. A transaction cannot
start if some transaction from the previous round has not finished yet (a), and cannot
commit, even on its turn, if some transaction from the same round has not started yet (b).
In contrast, Pot realizes that rounds are not necessary to respect a predefined serial order,
so transactions never wait to start, nor to commit on their turn. Pot also accelerates the
execution of the next transaction to commit according to the serial order.

commits in all benchmarks (Figure 3.7). However, the overhead of our implementation

of live promotion (Pot) only pays off in Genome, Vacation+, and Yada.

We also experimented with STMBench7. Figure 3.10 shows the throughput of DeSTM,

PoGL, Pot−, Pot∗, and Pot, normalized to the throughput of the baseline STM. Because

STMBench7 features a more diverse set of transaction profiles, with more complex read-

write transactions, live promotion is very effective at boosting Pot’s throughput: in fact,

30

3.4. EXPERIMENTAL EVALUATION

T
hr

ou
gh

p
u

t
no

rm
al

iz
ed

to
ST

M
ex

ec
u

ti
on

2 4 8 16
0
4
8

12
16
20

0.
46 1.
14

1.
20

0.
861.
58 3.

84

3.
08 3.
92

0.
45 1.
18

1.
15

1.
00

0.
59 1.
28

1.
71

1.
62

1.
46 3.

69

3.
11 4.

28

Read-dominated

DeSTM PoGL

2 4 8 16

1.
00

1.
20

0.
99

0.
44

9.
32

8.
38

7.
64

4.
21

1.
74

1.
20

0.
80

0.
601.
59

1.
15 1.
68

1.
03

8.
36

6.
66

6.
65

4.
22

Read-write

Pot− Pot∗ Pot

2 4 8 16
0
4
8

12
16
20

1.
18

1.
00

0.
80

0.
39

19.81

14.92

9.27
6.92

1.
61

1.
11

0.
81

0.
483.

23

2.
21

1.
34

1.
13

17.77

11.74

7.41 6.21

Write-dominated

Threads

Figure 3.10: How much faster is the execution of STMBench7 with x threads if we want
determinism? The y axis measures the throughput using DeSTM, PoGL (preordered
global lock), Pot− (ordered commits), Pot∗ (ordered commits and transaction modes),
and Pot (ordered commits, transaction modes, and live promotion), normalized to the
nondeterministic execution using the baseline STM (higher is better). The titles indicate
the workload type.

Pot is always faster than the nondeterministic baseline, usually by more than 3×.

To conclude, in our experiments Pot is a good general solution because it achieves the

best of both worlds: when speculation is effective Pot provides superior performance,

and when speculation is not effective Pot’s performance is very close to PoGL’s (Fig-

ures 3.7 and 3.10). Pot’s excellent results compared to DeSTM’s are explained by both the

speedups that fast transaction can achieve, as observed in Figure 3.6, and the decrease of

the time transactions spend waiting for their turn, as we observe in Figure 3.8. Pot marks

a significant advance over the state of the art in performance, and provides promising

evidence that using both STM and determinism to enable multithreaded replicas for fault

tolerance, and/or to ease multithreaded programming, may be practical.

Scalability. We further evaluate Pot’s scalability compared to a singlethread execution

using the baseline STM on STMBench7 and all of the STAMP benchmarks. For compari-

son we also show results for DeSTM and the baseline STM itself. The baseline’s behavior

serves as a guide for what to expect from Pot and DeSTM’s implementation: we don’t

expect them to scale if the baseline does not scale. However, ideally we should expect the

Pot and DeSTM implementation to scale, even if shyly, despite the overheads required to

ensure determinism, particularly the need to wait to enforce the deterministic commit

order. Figures 3.11 and 3.12 show the results for STAMP and STMBench7, respectively.

We observe that DeSTM fails to scale, whereas Pot is able to scale up to some point, no-

tably in Genome, Intruder and Vacation. Pot shows better results than the baseline on

STMBench7 because Pot inherently provides stronger progress guarantees to the more

31

CHAPTER 3. POT: PREORDERED TRANSACTIONS

×
fa

st
er

th
an

si
ng

le
th

re
ad

ed
ST

M
ex

ec
u

ti
on

2 4 8 16
0
2
4
6
8

10
12

1.
46 2.

69

1.
81

1.
98

0.
72 1.
16

0.
83

0.
851.
20 1.
51

1.
13

0.
90

Bayes

STM DeSTM Pot

2 4 8 16

1.
25 1.

96 2.
98 3.

72

0.
98 1.

89 2.
50

2.
092.
49

4.
59 6.

21

6.
31

Genome

2 4 8 16
0
2
4
6
8

10
12

1.
41 2.

60

4.
54 4.
99

0.
72

0.
72

0.
77

0.
461.

21 1.
65 2.

43 2.
73

Intruder

2 4 8 16

1.
85 3.

02 4.
89

6.
86

1.
75 2.
33 3.

54

2.
39

2.
17 2.
53 3.

42

2.
99

KMeans−

2 4 8 16
0
2
4
6
8

10
12

1.
97 3.

26 3.
82

2.
81

1.
31 1.
84

1.
05

0.
60

2.
72 3.
02

2.
47

1.
43

KMeans+

2 4 8 16

1.
97 3.

56

5.
84 7.

07

1.
02

1.
04

1.
01

0.
851.

75 2.
68 3.
38

2.
61

Labyrinth

2 4 8 16
0
2
4
6
8

10
12

1.
08 1.
45

1.
57

1.
81

0.
70

0.
67

0.
58

0.
561.
14

1.
03

0.
79

0.
75

SSCA2

2 4 8 16

1.
56 3.

01

5.
57

8.
44

1.
25 1.

96 2.
88

2.
96

1.
81 3.

02 4.
51 6.

03

Vacation−

2 4 8 16
0
2
4
6
8

10
12

1.
62 2.

99 4.
58 6.

10

1.
16 1.
54 1.
92

1.
552.

28 3.
54 4.

90 5.
84

Vacation+

2 4 8 16

1.
49 2.

53 4.
26 5.

52

0.
88

0.
86

0.
80

0.
491.

98

2.
23

2.
49

2.
55

Yada

Threads

Figure 3.11: Scalability of deterministic execution using DeSTM and Pot on STAMP. The
y axis measures the speedup over a singlethread baseline STM execution. A value of 1
means the execution time was the same as the baseline, a value greater than 1 means the
execution time was faster (better), and a value less than 1 means the execution time was
slower (worse).

complex transactions in the benchmark: while they struggle to commit in the baseline

STM, in Pot they eventually do when it is their turn, and even have their execution sped

up by the fast mode.

As threads increase it becomes increasingly challenging to mask the overhead required

32

3.4. EXPERIMENTAL EVALUATION

×
fa

st
er

th
an

si
ng

le
th

re
ad

ed
ST

M
ex

ec
u

ti
on

2 4 8 16
0
4
8

12
16
20

1.
43

0.
73

0.
91

0.
65

0.
66

0.
84

1.
10

0.
572.

11 2.
71

2.
84

2.
82

Read-dominated

STM

2 4 8 16

0.
93

0.
96

1.
05

1.
47

0.
93

1.
16

1.
04

0.
66

7.
78

6.
45 7.
03

6.
22

Read-write

DeSTM Pot

2 4 8 16
0
4
8

12
16
20

1.
10

1.
27

1.
52 2.
27

1.
30

1.
27

1.
22

0.
89

19.55

14.92

11.31
14.12

Write-dominated

Threads

Figure 3.12: Scalability of deterministic execution using DeSTM and Pot on STMBench7.
The y axis measures the speedup over a singlethreaded baseline STM execution. A value
of 1 means the throughput was the same as the baseline, a value greater than 1 means the
throughput was greater (better), and a value less than 1 means the throughput was lower
(worse). The titles indicate the workload type.

to ensure determinism, but nonetheless Pot manages to keep up with the baseline up to

a point. As part of future work we plan to address this issue by taking advantage of

commutativity: if two successive transactions in the predefined serial order commute

they can both execute simultaneously as fast transactions. The knowledge of whether two

transactions commute can either be fed by the programmer via some sort of annotations,

or inferred via analysis.

3.4.2 Hardware Transactional Memory

We also evaluate our Pot HTM implementation using the STAMP benchmark suite. We

are interested in answering the following questions: (1) how effective are fast transac-

tions, and (2) what is the cost that Pot incurs in to ensure deterministic execution.

Are fast transactions effective? (Section 3.4.2.1.) Yes, Pot fast transactions enjoy in-

creased capacity limits when compared to regular transactions. Our experiments show

that for 4 of the STAMP benchmarks, Pot fast transactions greatly reduce the need to fall

back to software (Figure 3.13).

What is the cost that Pot incurs in to ensure determinism? (Section 3.4.2.2.) Our exper-

iments show that Pot ensures deterministic execution across all of STAMP’s benchmarks

with moderate overhead (Figure 3.14.)

33

CHAPTER 3. POT: PREORDERED TRANSACTIONS

B
ay

es

G
en

om
e

In
tr

u
d

er

K
M

ea
ns
−

K
M

ea
ns

+

L
ab

yr
in

th

SS
C

A
2

V
ac

at
io

n−

V
ac

at
io

n+

Ya
d

a

0
20
40
60
80

100

47
.0

0

47
.4

0

32
.4

0

0.
00

0.
00

49
.9

0

0.
00

99
.3

0

98
.7

6

17
.5

1

4.
60

0.
00

0.
06

0.
00

0.
00

49
.8

5

0.
00

0.
01 3.
11 17

.3
9

Pe
rs

is
te

nt
ab

or
ts

(%
of

tr
an

sa
ct

io
ns

)
HTM Pot

Figure 3.13: Percentage of transactions that experience persistent aborts using baseline
HTM transactions and Pot fast HTM transactions on the STAMP benchmarks (lower is
better). − and + refer to the relative levels of contention in the configuration.

3.4.2.1 Effectiveness of fast transactions

While our Pot STM fast transaction is able to reduce concurrency control overheads,

implementing a HTM fast transaction that effectively reduces concurrency control over-

heads would require hardware support that is currently unavailable in existing processors.

However, by exploiting IBM’s Rollback-only Transactions (ROTs), Pot HTM fast transac-

tions enjoy increased capacity limits, which increases the chance of committing more

transactions entirely in hardware without falling back to the global lock.

We executed each benchmark with regular HTM and Pot using a single thread. Since

there is only one thread executing there are no aborts due to concurrency, however trans-

actions may still abort spuriously; thus we only count aborts that the hardware hints

to be persistent—we collect this information from the TEXASR register as we discuss

in Section 3.3.2. Figure 3.13 shows that the transactions that the baseline HTM can-

not accommodate in both Labyrinth and Yada are also not accommodated by Pot’s fast

transaction. The transactions of KMeans and SSCA2, on the other hand, can all execute

without problem. The rest of the benchmarks have a mix of transactions that can and

cannot execute in hardware. In these we can clearly see the benefit of Pot’s fast trans-

actions: for example, in Bayes around 47% of the transactions can not be accomodated

by the baseline HTM but this number falls to around 5% with Pot. Indeed, with Pot the

number of transactions that are not accomodated by the hardware falls down from more

than 30% to less than 5%. This means that Pot fast HTM transactions are successful at

avoiding to fall back to the global lock. Thus, fast transactions manage to regain some of

the parallelism lost to ordered commits when the baseline HTM falls back to software.

3.4.2.2 Performance

Figure 3.14 shows the overhead of deterministic multithreading using Pot HTM. It has

less overhead on benchmarks where the baseline often falls back to software (Bayes,

Genome, Vacation). In Genome Pot always outperforms the nondeterministic execution.

34

3.4. EXPERIMENTAL EVALUATION

B
ay

es

G
en

om
e

In
tr

u
d

er

K
M

ea
ns
−

K
M

ea
ns

+

L
ab

yr
in

th

SS
C

A
2

V
ac

at
io

n−

V
ac

at
io

n+

Ya
d

a

0
2
4
6
8

10

0.
81

0.
93 1.

94

1.
10 1.
39

0.
99 1.
31

1.
00

1.
03 1.
27

1.
05

0.
98 1.

92

1.
20 1.
70

0.
99 1.
36

1.
05

1.
08

1.
26

1.
20

0.
93 1.

96 2.
61

6.
46

0.
99 2.

45

1.
03

1.
07 1.
33

1.
35

0.
94 1.

76

5.
43

5.
18

0.
89

2.
64

0.
96

1.
02 1.
29

E
xe

c.
ti

m
e

no
rm

al
iz

ed
to

H
T

M
ex

ec
u

ti
on

2 threads 4 threads 8 threads 16 threads

Figure 3.14: Deterministic execution of STAMP using Pot. The y axis measures the
execution time normalized to the nondeterministic execution using the baseline HTM
(lower is better). − and + refer to the relative levels of contention in the configuration.

Vacation’s results in Figure 3.14 may seem unintuitive given than the baseline HTM

practically always falls back to the global lock while Pot mostly executes without resorting

the global lock (Figure 3.13). However, note that since all transactions executing in

speculative mode exceed the hardware capacity, Pot is also executing one transaction at a

time, albeit in fast mode instead of needing to fall back to the global lock.

Arguably the more interesting benchmarks are the ones where the baseline performs

well, i.e. falls back less to the global lock (Intruder, KMeans, SSCA2, and Yada from

Figure 3.13). In Intruder and Yada, in Figure 3.14, Pot achieves modest overheads of up

to 2×. KMeans and SSCA2 are optimal for the baseline HTM, featuring small transac-

tions with few accesses and conflicts. These characteristics make it difficult to mask the

overheads of ensuring determinism. KMeans also features an abundant use of thread

synchronization via barriers which amplifies the overhead caused by the sequencer while

assigning sequence numbers deterministically. Also note that since fast transactions are

not sped up in HTM, there is a noticeable drop in performance from 4 to 8 threads and

even more from 8 to 16 threads due to the increased memory latencies of the NUMA

architecture and hardware oversubscribing.

To the best of our knowledge, Pot advances the state of the art by enabling deter-

ministic execution of HTM-based multithreaded programs for the first time. Overall,

Pot achieves deterministic execution with lower overhead at lower thread counts, but in-

creased memory latencies lead to a drop in performance relatively to the nondeterministic

baseline. Efficiently achieving deterministic execution in the presence of non-uniform

memory accesses represents an interesting future research avenue. The results achieved

by Pot STM fast transactions suggest that hardware support for fast transactions that do

not abort due to conflicts with other transactions may be worthwhile.

35

C
h
a
p
t
e
r

4
LSD: Lazy State Determination

In this chapter, we present Lazy State Determination (LSD), a new interface to express

transactions that allows the database to collect semantic information useful to achieve

higher performance under contention without sacrificing safety. We also describe new

optimistic and pessimistic concurrency control algorithms for providing (strict) serializ-

ability while exploring semantic information to increase concurrency in the presence of

contention, using novel condition validation and condition locking techniques. Finally, we

evaluate our implementation of an LSD prototype using the TPC-C benchmark [64] and

microbenchmarks.

The chapter is organized as follows. We start by introducing and motivating the need

for LSD in Section 4.1. We proceed with an overview of LSD in Section 4.2, by explaining

the issues of the standard interface through a motivating example, from which we derive

the LSD interface. Section 4.3 then presents LSD in detail, describing the techniques we

use to design LSD-aware variants of OCC and 2PL in Section 4.3.3, and how to adapt 2PC

for distributed LSD transactions in Section 4.3.4. Section 4.4 describes our prototype and

the results of our evaluation.

4.1 Introduction

ACID transactions provide a simple and powerful abstraction to programmers: transac-

tions appear to complete atomically, one at a time despite executing concurrently. This

property greatly simplifies developing and reasoning about multi-threaded applications.

In recent years, we saw a continuing interest in research on transactional systems, e.g.,

as transactional properties were adopted in unconventional settings such as “NoSQL” sys-

tems [18], or as the performance of distributed transactions was improved by leveraging

new hardware features [22]. However, this research does not fundamentally improve the

37

CHAPTER 4. LSD: LAZY STATE DETERMINATION

performance of transactions when they meet one of their key Achilles heels, contention.

This is because, when transactions conflict with one another, they end up executing most

of their logic one at a time.

In this chapter, we build on the observation that the lack of semantic information

about the transaction leads to a conservative view of what is a conflict, and therefore im-

poses unnecessary synchronization between transactions. For example, two transactions

that increase the number of items in an inventory will be treated as conflicting because

they both write to the database tuple containing the total quantity. However, the seman-

tics of those transactions do not imply a conflict, provided that the aggregated effects of

both transactions are applied to the database.

To address this shortcoming, we propose lazy state determination (LSD), a novel API

for defining transactions that conveys their semantics to the database. The main insight

behind LSD is that by exploring the semantics of the transaction, it is possible to increase

concurrency while still providing (strict) serializability [55]. This contrasts with most of

previous work that explore semantic information to improve transaction processing [8,

54, 57] which focus on maintaining specific application invariants under consistency

models weaker than serializability.

One important challenge in our work is how to get useful semantic information with-

out requiring programmers to significantly modify their coding practices. To this end,

we realize LSD by having the tx-read operation return a future [7] (an opaque proxy

for a value) instead of a concrete value, and materializing futures as late as possible, i.e.

only when the transaction commits. To allow transactions to still be expressive with

futures without resolving them, we: (a) introduce a new operation, tx-is-true, that allows

transactions to specify conditions over futures, and (b) provide operations that allow

transactions to specify their updates to the database as lazily-evaluated functions that

can depend on futures. Warranties [44] also allow transactions to express conditions that

must hold for the transactions to succeed, but is insufficient to help increase concurrency

for transactions that perform computations using the values read, or externalize them.

This novel API allows LSD transactions to execute over an abstract database state,

and resolve this abstract state as late as possible, thus increasing the chances for safely

committing without breaking isolation. To this end, we modified existing optimistic and

pessimistic concurrency control protocols to allow for conditional validation. The key

idea of this design is to verify that the required conditions still hold when the transaction

attempts to commit (in the case of optimistic concurrency control), or to use a condi-

tion lock acquired in condition mode for a certain condition c, which is only compatible

with an acquisition in write mode if the value that will be written respects the condition c

(in the case of pessimistic concurrency control).

We built and evaluated a prototype transactional key-value store that provides ACID

transactions using the LSD interface. LSD transactions achieved up to 5×more through-

put with 1.5× less latency than standard transactions under high contention in our exper-

iments with the popular TPC-C benchmark [64].

38

4.2. OVERVIEW

1 tx-begin
2 v ← tx-read(stock)
3 if v ≥ qty
4 v ← v − qty
5 tx-write(stock, v)
6 tx-commit
7 else
8 tx-abort

a Traditional interface.

1 tx-begin
2 �← tx-read(stock)
3 if tx-is-true({� ≥ qty})
4 4 ← {�− qty}
5 tx-write(stock, 4)
6 tx-commit
7 else
8 tx-abort

b LSD interface.

Figure 4.1: Simplified portion of a TPC-C’s New Order-like transaction.

4.2 Overview

A typical database API exposes five operations: (1) tx-begin: starts a new transaction,

(2) tx-read(key): returns the value of the database object identified by key, (3) tx-write(key,

val): modifies the value of the object identified by key to val, (4) tx-commit: commit the

current transaction, and (5) tx-abort: aborts the current transaction.

Conceptually, a transaction is a function f that changes the database from an initial

state si to a final state sf , i.e. f (si) = sf . In light of this formulation, the tx-read and

tx-write API calls allow transactions to specify the final state (tx-write) as a function of

the initial state (tx-read).

4.2.1 The pitfalls of the traditional API

Consider the example in Figure 4.1a that depicts a simplified portion of the TPC-C new

order transaction [64], which implements the action of buying a certain quantity qty of

items. If the item’s stock
(
v ← tx-read(stock)

)
is enough to fulfill the order

(
v ≥ qty

)
, the

stock value decreases by qty
(
tx-write(stock, v − qty)

)
.

This example illustrates how the tx-read/tx-write interface fails to convey the seman-

tics of the transaction to the database, e.g., the dependencies of the transaction behavior

on the values it reads, or how it computes the values it writes. Instead, from the point

of view of the database, transactions are a sequence of opaque tx-read/tx-write opera-

tions. (Note that this is true regardless of whether transactions execute co-located with

the database, as stored procedures, or in a remote client.)

To understand how this can be a limiting factor, consider the situation where the

current stock value is 42 (stock), and the quantity to order is 1 (qty). When the trans-

action issues the tx-read(stock) operation, the database returns the value 42. Since the

database does not know what the transaction will do with the returned value, it must

be conservative to account for all possible situations, e.g., the transaction only executing

some operations depending on the returned value, or using the returned value to per-

form a computation that returns the value of a subsequent tx-write. As a consequence,

39

CHAPTER 4. LSD: LAZY STATE DETERMINATION

2PL must lock the stock object to prevent any other transaction from modifying it and

invalidate any branching decision or computed value by the transaction that observed

the value 42. Similarly, OCC records the read operation so that the database can check

that the stock’s value is the same when the transaction attempts to commit; if meanwhile

another transaction modifies the stock, transactions that observed the now-stale stock

value fail to commit.

As this example shows, a central part of enforcing transaction isolation is ensuring

that the state that a transaction observes (i.e., the values returned by tx-read operations)

remains unchanged throughout its execution. Our key insight is to question whether a

transaction really needs to observe a specific state during its execution. In other words, in

our running example, does the tx-read(stock) operation really need to expose a particular

state to the transaction before commit (e.g., the value 42)? With the current interface the

answer is yes. Otherwise, transactions cannot have conditional branches that depend on

the database state, nor perform updates to the state that are a function of that state. Going

back to our example, the transaction could not check whether there is enough stock nor

compute the new stock value.

4.2.2 Introducing LSD

In this chapter, we overcome these limitations by rethinking the transactional API in

order to provide ACID transactions that allow for greater concurrency. The key observa-

tion behind LSD is that, in general, transactions do not need to observe a concrete state

to execute most of their logic. Thus, we propose alternative semantics for the tx-read

operation. Specifically, the tx-read operation should not expose a specific database state

by returning a concrete value, but should instead return a future [7].

A future is an object that acts as a proxy for a value that is initially unknown. In

our case, a future symbolizes the value of a specific database object. This means that the

database promises the transaction to resolve the future’s value, but does not do it right

away. In particular, we want to defer evaluating futures until the transaction attempts

to commit (lazy evaluation [36]) to maximize concurrency. (Note that the traditional

semantics of the tx-read operation is equivalent to returning futures that are immediately

resolved.) Returning to our running example, we depict this modification in Figure 4.1b

with the future that symbolizes the stock value as �.

The proposed change to the semantics of the tx-read operation has a clear benefit: if

a transaction does not observe a specific database state, other transactions can modify it

without breaking the isolation guarantees of the first transaction. However, this raises the

problem of determining how can a transaction use futures. This can, in turn, be split into

two main challenges. The first is how can a transaction perform conditional branching

based on futures. The second is how can a transaction compute values that depend on

futures. For instance, how can the logic of our example transaction decide whether it can

fulfill the order if it does not know the stock value, and how can the transaction compute

40

4.2. OVERVIEW

the new stock value? (A naive approach is to eagerly resolve futures when a transaction

requires their value, but this again results in restricting concurrency.)

To solve the first challenge, we observe that a future symbolizes the value of a particu-

lar database object. While we would like that a transaction is not able to directly observe

the value of a future, we can still ask the database whether a future’s value respects a

certain condition. For example, the transaction can ask the database whether the stock

value is greater than qty, and make a control flow decision depending on the database’s

answer.

To support this functionality we introduce a new operation, tx-is-true(c), which, given

a condition c over one (or more) futures, returns whether the condition holds or not. We

show the tx-is-true operation using the � ≥ qty condition in Figure 4.1b. Note that while

the tx-is-true operation effectively exposes database state to the transaction, it exposes

an abstract state (the stock is greater than qty) rather than a concrete one (the stock

is 42), which has the potential to allow for more concurrency, e.g., by allowing concurrent

modifications of the stock value as long as it retains a non-negative value after all the

modifications.

The second challenge is how can a transaction perform computations using futures.

To solve this challenge, we observe that while a transaction cannot perform the actual

computation with futures, it can define the necessary computation and let the database

perform it when the transaction commits and the futures are resolved to concrete values.

For example, the transaction can define that the new stock value is whatever value its

future ends up resolving to minus qty.

To support this behavior we change the semantics of the tx-write operation so that,

instead of receiving the concrete new value for an object, it receives a function that

computes the concrete value when evaluated. This function has the important property

that it can depend on the values of any future, since the database can resolve them.

Furthermore, tx-write functions are lazily evaluated by the database when the transaction

commits, so that the futures that the functions depend on may remain unresolved. In

Figure 4.1b, we represent this function as {�− qty}, which is the argument of the tx-write

operation.

We expect that the proposed changes to the semantics of the tx-read and tx-write

operations and the addition of the tx-is-true operation will enable the database to provide

ACID transactions with more concurrency, potentially resulting in higher throughput and

lower latency, for two main reasons.

The first is that we decrease the time window in which a transaction requires isolation.

With the traditional interface, the transaction requires isolation from the moment when it

first observes database state (with the traditional tx-read operation) until the transaction

attempts to commit. With LSD the transaction only requires isolation during its commit

operation if it does not require any specific conditions.

The second reason is that we reduce the set of concurrent transactions that are forced

to abort, or wait, when executing concurrently with some transaction to guarantee the

41

CHAPTER 4. LSD: LAZY STATE DETERMINATION

Server (database)

!

Client (transaction logic)

LSD API (§3.2)

Concurrency
control (§3.3)

LSD API (§3.2)

Figure 4.2: Overview of the system’s architecture.

required isolation level. Even when a transaction needs to test some condition over

database objects, LSD’s tx-is-true operation still allows concurrent transactions to modify

those objects as long as these modifications do not invalidate the previously asserted

conditions. This contrasts with the traditional interface that prevents any modifications,

whether they violate such conditions or not. This leads to lower abort rates, or waiting,

and hence to a higher amount of useful work performed by the database.

That said, the LSD API is not a panacea. Transactions that must observe a concrete

state can not reap LSD’s benefits. For example, transactions that externalize values during

their execution need to resolve the required futures, falling back to the standard tx-read

semantics. However, we believe that a large class of transactions can take advantage of

LSD proposed semantics.

4.3 LSD Design

The high-level goal of LSD is to allow databases to provide ACID transactions with higher

performance than what can typically be achieved, while minimizing the changes in terms

of the way that programmers specify the logic of their transactions.

4.3.1 Design overview

Figure 4.2 shows the main components of our design. Clients execute application code

that interacts with the database server via transactions written using the LSD API. Note

that these are logical components, meaning that our design does not make assumptions

regarding the physical relationship between clients and servers, nor the physical real-

ization of the server. For example, clients can be physically separated from the server

or co-located with it (e.g., in a stored procedure), and the database may or may not be

partitioned or replicated. Nevertheless, for the rest of this chapter we assume that clients

execute transactions and are separated from the server, which is the case in our prototype

and evaluation.

42

4.3. LSD DESIGN

Operation Description
tx-begin Starts a new transaction.
tx-read(key)→ � Returns �, a future for the value of object key.
tx-read(4)→ � Evaluates the future 4 and returns�, a future for the value of the

object that 4 evaluates to.
tx-is-true(�)→ boolean Returns whether the condition� is currently true in the database.
tx-write(key, �) Updates object key’s value to the value that � will evaluate to.
tx-write(4, �) Updates the value of the object that 4will evaluate to, to the value

that � will evaluate to.
tx-commit→ boolean Attempts to commit the ongoing transaction.
tx-abort Aborts the ongoing transaction.

Figure 4.3: The LSD interface operations. The symbols � and 4 denote futures.

4.3.2 Interface

Figure 4.3 shows the LSD interface, which allows applications to execute transactions

against the database. The tx-begin, tx-commit, and tx-abort operations are the stan-

dard operations. They allow an application to start, commit, and abort a transaction,

respectively. LSD introduces two changes to the standard interface: new semantics for

the tx-read and tx-write operations, and a new tx-is-true operation. We first describe the

new tx-read and tx-write operation semantics, then present the tx-is-true operation, and

finally address the case when a transaction wants to access an unknown object, i.e., the

object identifier is itself a future.

tx-read. The typical semantics of the tx-read operation is to return the current value

of the object, which requires the concurrency control protocol to kick in as a result of

exposing the database state to transactions. In contrast, LSD’s tx-read operation returns

a future for the value of a given object, instead of exposing the object’s current concrete

value. From the application’s point of view, this future is an opaque representation of the

object’s value. However, the database knows how to interpret such future; in particular, it

has the possibility to resolve the future, i.e., compute the value that the future represents,

which is to actually read and return the object’s value. Thus, informally the contract that

LSD provides between the transaction and the database is the following: the transaction

should use the future as if it is the actual value, and the database promises to lazily resolve

the future such that, when the transaction commits, it is as if it executed with the concrete

value instead of the future. The benefit of these semantics is that the concurrency control

protocol only needs to intervene when the database resolves a future and not when a

transaction issues a tx-read operation.

tx-write. The traditional tx-write operation receives both the identifier of the object and

its new value. This interface fits well with the traditional tx-read operation since reads

return concrete values, so if a transaction wants to modify the value of an object it can

read the object, compute the modified value, and write this new value. However, since the

LSD tx-read operation returns a future instead of a concrete value, the transaction should

be able to modify and write values derived from futures, instead of concrete values. To

43

CHAPTER 4. LSD: LAZY STATE DETERMINATION

address this, we have two choices. The first is to resolve the future so that the transaction

can perform its modification. This approach goes against LSD’s goal, since resolving

futures exposes database state to transactions, which in turn requires the concurrency

control algorithm to enforce the required isolation. The second choice, which we follow, is

defining but not performing the computation necessary to modify the value, so that futures

may remain unresolved to promote parallelism. To do so, the transaction specifies the

computation it needs to do as a function that, when evaluated by the database, computes

the new value for the object. For instance in our running example of Figure 4.1b, where a

transaction wants to decrease the avaliable stock for a given item, the transaction reads

the stock and obtains � (its future value), and defines the function that decreases the

stock (�− qty). This function is also a future: it represents the value that the transaction

intends to write to the stock object. For this approach to work, the database needs to

know how to evaluate such functions so that, when the transaction commits, the database

can install the object’s new value. To understand how this can be done, we observe that

we can divide this function evaluation into two parts: resolving future reads on which

the function depends on, and executing the function’s logic. As discussed, the database

knows how to resolve future reads. As for executing the function’s logic, the idea is

that we define this in a way that the database can initially refer to the function without

resolving it, but at commit time interpret and execute it. To achieve this, in our prototype,

we provide transactions with a library of operations, which can be composed to create

functions, e.g., sub(�, qty) to decrease the stock in our example.

tx-is-true. So far, we managed to prevent exposing database state to transactions by

changing the semantics of the tx-read and tx-write operations. However, transactions

may need to decide what to do based on the database state, as exemplified in our running

example where the transaction only orders the item if there is enough stock available.

As before, we want to avoid resolving the futures required to make the decision of what

to do, we introduce the tx-is-true operation, which, given a condition over the database

state, returns whether the condition holds or not. This condition is a function that, as

discussed for the tx-write operation, can depend on futures. In our running example, the

transaction decides to decrease the stock depending on whether there is enough stock

available: � ≥ qty. (In our prototype, we also provide transactions with operations to

create conditions, e.g., gte(�, qty), to check whether there is enough stock.)

Note that the tx-is-true operation does expose database state to transactions, but this

is inevitable if the transaction performs different actions depending on the database state.

The merit of the tx-is-true operation is that it exposes abstract, instead of concrete, state to

transactions, which enables the database to maintain isolation while potentially allowing

more parallelism. For instance, if the transaction of our running example attempts to

purchase a quantity of 4, and the current stock is 42, the tx-is-true operation returns >.

Other concurrent transactions may successfully update the stock value and commit with-

out breaking isolation as long as the stock value remains greater or equal to 4. Enforcing

44

4.3. LSD DESIGN

the semantics of this operation requires the concurrency control protocol to either: (1) en-

sure that the result of the tx-is-true operation remains valid until the transaction commits

(pessimistic approach, 2PL-style), or (2) abort the transaction when it attempts to commit

if the result of the condition no longer holds (optimistic approach, OCC-style). In the

next section we discuss how to adapt both 2PL and OCC to support for the tx-is-true

operation. We implemented both approaches in our prototype.

Futures as keys. Up until this point, we have not discussed what happens when the

transaction attempts to read or write an object whose identifier is itself a future. For

reads, this situation is likely to happen when accessing objects via a secondary index.

Secondary indexes are seldom kept on keys whose values are updated frequently since

they tend to be expensive to modify [63]. Given this observation, we chose to resolve the

future immediately when a tx-read operation receives a future as a parameter, in order

to know which object is being read. This simplifies reasoning and implementation effort,

since the alternative of maintaining “futures of futures” would require a chain of resolves

at commit time. As for future identifiers in tx-write operations, we chose to keep them

unresolved because transactions may write to objects whose future-keys depend on the

database state. This is the case, for example, when assigning unique identifiers to keys

from a monotonically increasing counter, which we believe to be a common programming

idiom.1 As such, if we resolve the future identifier immediately, we risk exposing highly-

contended database state to transactions, which goes against our design goals. The price

we pay for our decision is that, in the general case of distributed transactions, they may

require an additional communication round with servers to commit. We discuss this

aspect further in Section 4.3.4.

4.3.3 Concurrency control

Now we turn our attention to the impact the LSD API has on concurrency control, and

discuss how to adapt two popular and representative concurrency control protocols:

OCC [40, 65] and 2PL [11, 24]. The two main elements of the LSD API that drive the

adaption are: (1) futures, as the protocol needs to be aware of them to know what to do

at commit time, and (2) the tx-is-true operation, which exposes abstract database state to

transactions and therefore requires concurrency control.

4.3.3.1 Overview

The high level idea of the adaptation of both OCC and 2PL is to maintain two extra read

and write sets, which we call future read and write sets, to keep futures unresolved until

commit time, and a condition set to support the tx-is-true operation and conditions. The

LSD-aware OCC and 2PL protocols differ mainly on how they handle the condition set.

1This is the case in the popular TPC-C benchmark [64]. The fact that purchase orders have monotonically
increasing identifiers not only guarantees uniqueness, but also serves to identify and compare the recency of
each order.

45

CHAPTER 4. LSD: LAZY STATE DETERMINATION

OCC verifies that the conditions still hold at commit time while 2PL ensures that con-

current transactions that write values that invalidate active conditions cannot commit

while such conditions are active. Otherwise, the new protocols follow the essence of the

original protocols.

Figures 4.4 and 4.6 show the LSD-aware OCC and 2PL protocols, respectively. The

behavior of the tx-begin, tx-read(key), and tx-write operations is protocol-agnostic so we

start by describing these before detailing the protocols for OCC and 2PL in Section 4.3.3.2

and Section 4.3.3.3, respectively.

tx-begin. Initializes the read/write sets, future read/write set, and condition set (rset,
wset, frset, fwset, and cset, respectively.)

tx-read(key). Creates a future-value for key’s value (�), add it to the future read set, and

returns it. (This is a local operation).

tx-write(key,�). Buffers �, the future-value for key, in the write set.

tx-write(4,�). Buffers �, the future-value to assign the future-key 4, in the future write

set.

4.3.3.2 Optimistic concurrency control (OCC)

In a nutshell, OCC works as follows. Each database object is associated with a version.

Reads record the object identity and the observed version in the read set. Writes are

buffered in the write set until the transaction attempts to commit, instead of modifying

the database immediately. Then, when a transaction attempts to commit, it atomically

verifies if every object in the read set is unchanged, i.e., if it is still in the same version that

was read, and, if so, all buffered updates are applied, and the respective version numbers

are incremented. This atomic test and change is implemented in three steps: (1) lock the

write set, (2) validate the read set, and (3) perform the pending writes, if the validation

was successful, and release the acquired locks.

Next, we describe the adaptations required for the remaining operations, as depicted

in Figure 4.4.

tx-read(4). Resolves the future-key 4, i.e., compute its concrete value value and add the

observed version to the read set, and then tx-read(value). (Returning a future.)

tx-is-true(�). Observes the current value of each key present in the condition�, i.e., each

future-value over which the condition is defined, resolve � using the observed values,

add the result to the condition set, and returns it.

tx-commit. As we discussed, the commit protocol executes in three steps. First, we

lock the write set and the future-write set. However, the latter initially has its keys

unresolved. To resolve and then lock them, we first need to resolve the future read set

because it contains the future-values of tx-read operations that were delayed, and future-

keys and future-values in the regular and future write sets are likely to depend on the

future read set.
(
e.g., a transaction reads key and gets future-value �, which it then uses

to create a future 4 = f (�), according to some function f , that the transaction uses as a

46

4.3. LSD DESIGN

1 tx-begin
2 rset← ∅
3 wset← ∅
4 f rset← ∅
5 f wset← ∅
6 cset← ∅
7 tx-read(key)
8 �← future(key)
9 f rset← f rset ∪ {�}

10 return �

11 tx-read(4)
12 key ← key(4)
13 〈value, version〉 ← get(key)
14 rset← rset ∪ {〈key, version〉}
15 return tx-read(value)

16 tx-write(key, �)
17 wset← wset ∪ {〈key, �〉}
18 tx-write(4, �)
19 f wset← f wset ∪ {〈4, �〉}
20 tx-is-true(�)
21 rvalues← ∅
22 foreach key ∈ keys(�) do
23 rvalues← rvalues ∪ {〈key, get(key)〉}
24 result← resolve(�, rvalues)
25 cset← cset ∪ {〈�, result〉}
26 return result

1 tx-commit
2 rvalues← ∅
3 result←>
4 foreach 〈key, −〉 ∈ wset do
5 lock(key)

6 foreach � ∈ f rset do
7 key ← key(�)
8 lock(key)
9 rvalues← rvalues ∪ {〈key, get(key)〉}

10 foreach 〈4, �〉 ∈ f wset do
11 key ← resolve(4, rvalues)
12 lock(key)
13 wset← wset ∪ {〈key, �〉}
14 foreach 〈key, version〉 ∈ rset do
15 if version , version(key) then
16 result←⊥

17 foreach 〈�, expected〉 ∈ cset do
18 value← resolve(�, rvalues)
19 if value , expected then
20 result←⊥

21 if result => then
22 foreach 〈key, �〉 ∈ wset do
23 value← resolve(�, rvalues)
24 version← next-version(key)
25 put(key, value, version)

26 foreach key ∈ wset ∪ keys(f rset) do
27 unlock(key)

28 return 〈result, rvalues〉

Figure 4.4: LSD-aware OCC protocol.

future-key — tx-write(4,...) — and/or future-value — tx-write(...,4).
)

To guarantee that

we resolve the future read set consistently, we first lock the respective keys.

In the second step, we validate the read set. In addition to the read set, transactions

also observe database state via conditions and the tx-is-true operation, so we also validate

each condition in the condition set using the values obtained from the future read set.

Finally, in the third step, we resolve the buffered future-values, perform the writes, and

release acquired locks.

To illustrate these steps, we will simulate the execution of our running example of

Figure 4.1b. First, the transaction issues the tx-read operation for the item’s stock. This

operation is local to the client, since it merely creates the future � and returns it. Then

the transaction attempts to purchase qty amount of items if there is enough stock. Let

us assume that qty = 10. Since the transaction does not know the concrete value of

the item’s stock, it uses the tx-is-true operation to check whether there are at least 10

items available. Assume that, in this example execution, the transaction is operating on

a database state where there are at least 10 items in stock. Then, in order to maintain

47

CHAPTER 4. LSD: LAZY STATE DETERMINATION

R W R(p) W
(
v : c(v)

)
W
(
v : ¬c(v)

)
R X − X − −

W − − − − −
R(p) X − X X −

W
(
v : c(v)

)
− − X − −

W
(
v : ¬c(v)

)
− − − − −

Figure 4.5: 2PL’s lock compatibility matrix. The gray cells represent the standard 2PL
matrix, and LSD introduces the remaining cells. A X means that acquiring the lock in
row mode succeeds when the lock is in column mode.

isolation, this condition must also hold when the transaction attempts to commit, and

thus the transaction records the condition and its result in the condition set for commit-

time validation. Finally, the transaction defines the necessary computation to update the

stock value with the future 4, issues the tx-write with it, and attempts to commit. The

tx-commit operation will then atomically resolve the stock value � to, for example, 42,

verify that 42 ≥ 10, and compute the new stock value 4 to be 42−10 = 32. Note that, when

using standard OCC, any concurrent write to the stock value causes the transaction to

abort. With LSD-aware OCC, instead, the transaction only aborts if between the time the

tx-is-true and tx-commit operations are issued the stock value changes to a value below

10.

Possible optimization. Since the tx-is-true operations are validated at commit time to

ensure isolation, it is possible to optimistically assume a specific result for an tx-is-true

operation without communicating with the database. Whether this behavior yields better

performance or not depends on the success rate of the assumption: if the assumption is

correct we save one communication round with the database, but if it is not, the transac-

tion aborts, perhaps needlessly, and upon retry performs the tx-is-true operation normally.

We evaluate this optimization in Section 4.4.

4.3.3.3 2-phase locking (2PL)

2PL follows a rational opposite to OCC: instead of assuming that conflicts seldom hap-

pen, 2PL immediately acquires a lock when a transaction accesses an object to prevent

conflicting transactions from proceeding in parallel and breaking isolation.

The central idea of the adaptation of 2PL to LSD’s tx-is-true operation is the novel

concept of a condition lock, which is an extension of a read-write lock. To understand

the semantics of condition locks, we first recall that read-write locks can be acquired in

either read or write mode (R or W). The semantics of read-write locks are then given

by their compatibility matrix shown in gray in Figure 4.5. This shows that multiple

readers, i.e., read-mode acquires, can proceed simultaneously, but writers are serialized.

Condition locks, in turn, have two additional modes: read condition and write value. The

read condition mode, R(c), essentially associates a condition c with the lock, signaling

48

4.3. LSD DESIGN

1 tx-begin
2 rset← ∅
3 wset← ∅
4 f rset← ∅
5 f wset← ∅
6 cset← ∅
7 tx-read(key)
8 �← future(key)
9 f rset← f rset ∪ {�}

10 return �

11 tx-read(4)
12 key ← key(4)
13 lock(key)
14 value← get(key)
15 rset← rset ∪ {key}
16 return tx-read(value)

17 tx-write(key, �)
18 wset← wset ∪ {〈key, �〉}
19 tx-write(4, �)
20 f wset← f wset ∪ {〈4, �〉}
21 tx-is-true(�)
22 rvalues← ∅
23 foreach key ∈ keys(�) do
24 lock(key)
25 rvalues← rvalues ∪ {get(key)}

26 result← resolve(�, rvalues)
27 foreach key ∈ keys(�) do
28 add-condition(key, 〈�, result〉)
29 unlock(key)

30 cset← cset ∪ {�}
31 return result

1 tx-commit
2 rvalues← ∅
3 foreach � ∈ f rset do
4 key ← key(�)
5 lock(key)
6 rvalues← rvalues ∪ {〈key, get(key)〉}
7 foreach � ∈ cset do
8 foreach key ∈ keys(�) do
9 rem-condition(key, �)

10 set← ∅
11 foreach 〈4, �〉 ∈ f wset do
12 key ← resolve(4, rvalues)
13 set← set ∪ {〈key, �〉}
14 writes← ∅
15 foreach 〈key, �〉 ∈ wset ∪ set do
16 value← resolve(�, rvalues)
17 writes← writes ∪ {〈key, value〉}
18 foreach 〈key, value〉 ∈ writes do
19 lock-compatible(key, writes)
20 put(key, value)

21 foreach key ∈ writes∪ rset ∪ keys(frset) do
22 unlock(key)

23 return 〈>, rvalues〉

Figure 4.6: LSD-aware 2PL protocol.

that a transaction has observed a value that respects the condition c. Other transac-

tions can still successfully update a read condition-locked object by acquiring the lock in

write value mode. The write value mode, W(v), is aware of the value v that the transaction

intends to assign to the object. If the lock is in read condition mode and the value v re-

spects all the conditions that the lock holds, the write mode acquire succeeds. Otherwise

it blocks as usual. Note that the read condition mode is a generalization of the read mode:

the latter is smilar to the former with a condition that always returns false regardless of

the value other transactions intend to write.

Next, we describe the adaptations required for the remaining operations, which are

also summarized in Figure 4.6.

tx-read(4). Resolves the future-key 4, i.e., compute its concrete value value by lock-

ing key, reading its value, and then tx-read(value). (Returning a future.)

tx-is-true(�). Atomically observes the current value of each key present in the condi-

tion � by locking all keys. Resolve the condition � using the observed values, and

49

CHAPTER 4. LSD: LAZY STATE DETERMINATION

downgrade the acquired locks to read condition mode using � and its result.

tx-commit. Resolves the future read set by locking and performing the delayed reads.

Remove the conditions installed via the tx-is-true operations since we already resolved

the future read set. Resolve all future-keys in the future write set, and all future-values in

the future and concrete write set. Given that we now know the transaction’s full write set,

acquire the locks in write value mode, perform the writes, and release the acquired locks.

Again, to better understand these steps, we will go through the steps of the execution

of our running example of Figure 4.1b. The transaction reads the item’s stock, which is

an operation local to the client. Then the transaction attempts to purchase qty amount of

items if there is enough stock. Let us assume that qty = 10. The transaction uses the tx-is-

true operation to check whether there are at least 10 items available. Again, assuming that

this is the case, to maintain isolation this must be also true when the transaction commits.

To ensure this, a condition lock is acquired, in read condition mode, on the stock stating

that its value must remain greater or equal to 10. The transaction proceeds to define the

necessary computation to update the stock value with the future 4, issues the tx-write

with it, and attempts to commit. The tx-commit operation will then atomically resolve

the stock value � to, for example, 42, remove the condition � ≥ qty from the stock lock,

and compute the new stock value 4 to be 42− 10 = 32. Then the transaction acquires the

stock’s lock in write value mode with 32, blocking only if there is any concurrent reader

that installed a condition c such that ¬c(32). (With standard 2PL any concurrent reader

would cause the transaction to block.) Finally, the transaction modifies the stock to 32

and releases the locks.

4.3.3.4 Multi-future conditions

OCC and 2PL fundamentally differ on how they deal with the validity of conditions. OCC

does not ensure that a condition asserted via the tx-is-true operation remains valid. This

is because write transactions are not aware of those conditions and can freely violate the

conditions when they commit. As such, it is up to a transaction that asserts a condition to

validate it when the transaction attempt to commit to ensure isolation, i.e., the burden of

dealing with conditions is on the readers. In constrast, 2PL ensures that an asserted con-

dition remains valid until the asserting transaction commits, as acquring a condition lock

in write value mode will block if the value to be written violates any existing asserted

condition, i.e., the burden of dealing with conditions is on the writers.

Dealing with conditions on the writer’s side is more complex than on the reader’s, and

this complexity is exacerbated in the presence of conditions that encompass more than

one future (multi-future conditions). For example, consider two keys x and y, with values

2 and 1, respectively, read by some transaction t1 as futures � and 4. t1 then executes

tx-is-true({� > 4}), which returns > (because 2 > 1). Then assume that, concurrently,

another transaction t2 attempts to write 1 to x. For t2 to acquire x’s condition lock in

write value mode with value 1 and commit, the procedure to acquire the condition lock

50

4.4. EVALUATION

in write value mode (lock-compatible in Figure 4.6) can only grant the lock to t1 if 1 > 4
remains valid. Thus, the locking procedure must resolve 4 to check the concrete validity

of 1 > 1. To do so, there are two possibilities. If t2 also reads y, then it has acquired a

read lock on y so it can safely resolve 4. If not, the lock procedure needs to resolve 4 in a

way that still ensures transactional isolation, e.g., by acquiring a read lock on y on behalf

of t2.

Given the experience in the implementation of our prototype, we argue that the tx-is-

true operation is simpler to implement, and understand, using an optimistic approach.

Additionally, the experimental evaluation (Section 4.4) using our prototype shows that

the LSD-aware OCC protocol performs better than the LSD-aware 2PL protocol, so we

conclude that future implementations of LSD should use OCC in most cases.

4.3.4 Distributed transactions

So far we have discussed how to adapt both OCC and 2PL to exploit LSD in the context of a

single server. However, transactions may be distributed, i.e., span multiple servers, if the

database is partitioned. We now briefly sketch how to adapt 2-phase commit (2PC) [11],

the most widely used distributed commit protocol, to support LSD.

LSD introduces the future read and write sets, and condition set. The future write set

is of particular importance, since it depends on the future read set. This means that, in

general, transactions that have a non-empty future write set require an additional round

of communication during 2PC’s prepare phase. Each participant resolves, and returns, its

portion of the future read set in the regular communication round of the prepare phase.

Armed with the resolved future read set the coordinator can resolve the future write set

and send it to the required participants.

It is possible to circumvent the need for the additional communication round in the

prepare phase and send the future write set immediately in the first round if, for every

entry in the future write set: (1) we can identify its future-key’s partition without resolv-

ing it, and (2) (all) the future(s) on which the future-key depends is (are) from the same

partition it belongs to. In our experiments we evaluate both cases: when LSD incurs in

an additional communication round in 2PC, and when it does not.

4.4 Evaluation

We implemented a partitioned, transactional, key-value store prototype, including all

of the previously described design with the exception of multi-future conditions. Each

partition is implemented as a Thrift [5] non-blocking server, and data is stored in disk

using RocksDB [25]. Clients can execute transactions using the typical API (tx-begin,

tx-read, tx-write, tx-commit, and tx-abort operations) or LSD’s API which features our

proposed tx-read, tx-write, and tx-is-true operations. We implemented both classical

OCC and 2PL, and also both their LSD-aware variants for LSD transactions. Distributed

51

CHAPTER 4. LSD: LAZY STATE DETERMINATION

transactions commit using 2PC. We resolve deadlocks that may arise in 2PL or 2PC using

the wound-wait strategy.

We conducted an experimental evaluation of our LSD prototype on a private gigabit

ethernet cluster. Each server runs on a machine with a 2Ghz Intel Xeon E5-2620 proces-

sor, 32GB of RAM, and a 7200 RPM hard drive. Clients run on the various remaining

machines with AMD and Intel processors, and communicate with the servers using Thrift

RPCs.

Each data point reports the average of 5 runs. Our evaluation seeks to answer the

following questions:

• Does LSD improve the performance of realistic applications under contention? (Sec-

tion 4.4.1.1)

• What is LSD’s overhead when contention is low? (Section 4.4.1.2)

• How do LSD’s benefits vary across various deployment scenarios, such as with a

single database, or with a partitioned database and distributed transactions? (Sec-

tion 4.4.1)

• What is the impact of an increasing amount of contention with and without condi-

tions? (Section 4.4.2)

4.4.1 Realistic application: TPC-C

We used the popular TPC-C benchmark [64] to assess LSD’s ability to improve perfor-

mance of realistic applications under contention, as well as its overhead, on different

deployment scenarios. LSD was particularly helpful for the two core transactions of the

workload: Payment and New Order. For example, both make use of write functions to

modify client balance and stock values, and the latter also uses conditions.

We experimented with TPC-C under three different deployments: (a) a centralized

database, (b) a partitioned database using an application-specific partitioning policy,

and (c) a partitioned database using an application-agnostic partitioning policy. We

executed TPC-C with a high and low contention workload in each deployment.

Setup. We setup each deployment as follows. The centralized database (a) uses a single

server that stores the entire data. The database partitioned using an application-specific

policy (b) uses 3 servers. The data associated with a particular warehouse is stored within

a single server. The remaining data, such as item information, is partitioned across

all servers via hashing. Finally, the database partitioned using an application-agnostic

policy (c) also uses 3 servers. Data is partitioned across all servers via hashing.

52

4.4. EVALUATION

0 400 800 1.2K 1.6K 2K
0

40

80

120

160

200

Throughput (commits/s)

A
vg

.l
at

en
cy

(m
s) OCC

a 1 server, high contention.

0 400 800 1.2K 1.6K 2K
0

40

80

120

160

200

Throughput (commits/s)

A
vg

.l
at

en
cy

(m
s) 2PL

b 1 server, low contention.

0 400 800 1.2K 1.6K 2K
0

40

80

120

160

200

Throughput (commits/s)

A
vg

.l
at

en
cy

(m
s) OCC-LSD

c 3 servers, high contention, part. by warehouse.

0 400 800 1.2K 1.6K 2K
0

40

80

120

160

200

Throughput (commits/s)

A
vg

.l
at

en
cy

(m
s) 2PL-LSD

d 3 servers, low contention, part. by warehouse.

0 400 800 1.2K 1.6K 2K
0

40

80

120

160

200

Throughput (commits/s)

A
vg

.l
at

en
cy

(m
s)

e 3 servers, high contention, part. by hash.

0 400 800 1.2K 1.6K 2K
0

40

80

120

160

200

Throughput (commits/s)

A
vg

.l
at

en
cy

(m
s)

f 3 servers, low contention, part. by hash.

Figure 4.7: Performance of TPC-C on a workload using: 1 server with high (a) and low (b)
contention; 3 servers with partitioning by warehouse (b,e); and 3 servers with partitioning
by hash (c,f).

4.4.1.1 High contention

In TPC-C, the level of contention is proportional to the number of warehouses, so we

loaded the database with the minimum number of warehouses applicable to each deploy-

ment (as detailed below) and then executed TPC-C with an increasing number of clients.

Figures 4.7a, 4.7c, and 4.7e, compare the throughput, measured in committed transac-

tions per second (x axis), and the corresponding average transaction execution latency,

measured in in milliseconds (y axis), of OCC and 2PL with and without LSD.

Centralized deployment (Figure 4.7a). We began by loading the database with 1 ware-

house. The LSD-aware OCC variant achieved a peak throughput of ≈ 1K committed

transactions per second with an average latency of ≈ 70 ms, which amounts to ≈ 6.5×
higher throughput and≈ 2.5× lower latency than standard OCC under the same load. The

53

CHAPTER 4. LSD: LAZY STATE DETERMINATION

LSD-aware 2PL variant achieved a peak throughput of ≈ 850 committed transactions per

second with an average latency of ≈ 80 ms, which amounts to ≈ 2.5× higher throughput

and ≈ 1.5× lower latency than standard 2PL under the same load.

Partitioned deployment using application-specific policy (Figure 4.7c). For this de-

ployment we loaded the database with 3 warehouses. Data was partitioned across the

servers by warehouse, i.e., each server hosts a single warehouse. This scenario allows for

the presence of distributed transactions. Distributed LSD transactions commit using the

regular 2PC protocol, i.e., without incurring in the additional communication rounds

discussed in Section 4.3.4, thanks to the application-specific partitioning policy. The

LSD-aware OCC variant achieved a peak throughput of ≈ 2K committed transactions per

second with an average latency of ≈ 50 ms, which amounts to ≈ 5× higher throughput

and ≈ 1.5× lower latency than standard OCC under the same load. The LSD-aware 2PL

variant achieved a peak throughput of ≈ 1.5K committed transactions per second with

an average latency of ≈ 60 ms, which amounts to ≈ 1.5× higher throughput and ≈ 1.3×
lower latency than standard 2PL under the same load.

Partitioned deployment using application-agnostic policy (Figure 4.7e). For this ex-

periment, we loaded the database with a single warehouse, and all data is partitioned

across the servers using hashing. By using an application-agnostic partitioning policy,

such as hashing, distributed LSD transactions may need an additional communication

round to commit using 2PC. This is the case for the New-Order transaction, which com-

prises almost half of the workload. Despite the additional communication round, the

LSD-aware OCC variant achieved a peak throughput of ≈ 500 committed transactions per

second with an average latency of ≈ 120 ms, which amounts to ≈ 2.8× higher throughput

and ≈ 1.3× lower latency than standard OCC under the same load. The LSD-aware 2PL

variant achieved a peak throughput of ≈ 500 committed transactions per second with

an average latency of ≈ 120 ms, which amounts to ≈ 1.8× higher throughput and ≈ 1.3×
lower latency than standard 2PL under the same load.

Discussion. This workload highlights the benefits of LSD. For example, under the stan-

dard interface semantics, any two concurrent New-Order transactions conflict if: (a) they

operate on the same district (conflicting accesses to the district’s order identifier counter),

or (b) they order the same item (conflicting accesses to the item’s stock). Under OCC only

one of the concurrent transactions commits and the other aborts. Under 2PL one of the

transactions queues behind the other when it attempts to acquire the lock held by the

other. In both cases one of the transactions effectively prevents the other from executing,

leading to an effective serialization of their execution. With LSD, New-Order transactions

delay their accesses to the district’s order identifier counter until commit time, so these

accesses do not result in aborts under OCC, nor queueing during transaction execution

under 2PL. Furthermore, any two New-Order transactions that order the same item only

conflict if both attempt to buy the entire remaining stock. LSD’s benefits translate in

practice to higher throughput and lower latency under contention due to less aborts (resp.

blocks) under OCC (resp. 2PL). For example, in the data point where LSD transactions

54

4.4. EVALUATION

achieve their peak throughput on Figure 4.7a, ≈ 92% of OCC transactions abort, whereas

this number drops to ≈ 8% with the LSD-aware variant.

It is worth noting that our LSD-aware 2PL implementation incurs in higher overhead

than its OCC counterpart. While there still may be room for optimization of our proto-

type, the LSD-aware 2PL has fundamentally more overhead than its OCC counterpart

because condition locks are a more complex technique than condition validation.

4.4.1.2 Low contention

In the previous section, we evaluated LSD using a TPC-C workload with high contention,

which is the type of workload that LSD can benefit from. In this section we describe

our evaluation of LSD in the opposite scenario: a TPC-C workload with low contention.

Specifically, we increased the number of warehouses in the workload from 1 to 32.

In both the centralized (Figure 4.7b) and partitioned deployment using the application-

specific policy (Figure 4.7d) we observe that the LSD-aware OCC variant incurred in

marginal overhead. In the partitioned deployment using the application-agnostic pol-

icy (Figure 4.7f), the overhead becomes more pronounced (≈ 1.25–1.5×) due to the addi-

tional communication round needed to commit some distributed transactions. However,

at high load the LSD-aware variant managed to achieve similar to better performance. In

contrast, the LSD-aware 2PL consistently exhibits worse performance than either concur-

rency control protocol using the standard interface.

We conclude that the LSD-aware OCC protocol is not only the best of the LSD variants,

but also the best solution when either using a single database or a partitioned database

with a partitioning scheme that allows for committing distributed transactions without

incurring in additional communication rounds. Even with additional communication

rounds, LSD is able to reap better performance under contention, while still providing

competitive performance when contention is low.

4.4.2 Microbenchmarks

In this section we report on microbenchmark results that show the effect of specific

workload characteristics on LSD.

Contention without conditions. We start by analyzing the effect of contending read-

modify-write operations. To do so, we loaded the database with as many private counters

as there were clients, and a single shared counter—the “hot” counter. Transactions con-

sisted of an increment of either the hot counter, according to some probability p, or the

respective private counter, with probability 1− p. We executed the microbenchmark for

various values of p, ranging from 0% (no contention) to 100% (all transactions contend).

Figure 4.8a plots the measured throughput as a function of the parametrized con-

tention. The LSD-aware protocols are not affected by the parameter because the incre-

ments are delayed until commit time, whereas the throughput of the OCC and 2PL proto-

cols decreases when contention increases, as expected, due to aborts in OCC (Figure 4.8b),

55

CHAPTER 4. LSD: LAZY STATE DETERMINATION

0% 20% 40% 60% 80% 100%
0K

3K

6K

9K

12K

15K

Trans. accessing hot key

C
om

m
it

s/
s

OCC

a hotkey throughput.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Trans. accessing hot key

A
bo

rt
ed

tr
an

s.

b hotkey aborts.

1 0.1 0.01 0.001 0.0001
0K

3K

6K

9K

12K

15K

Condition invalidation ratio

C
om

m
it

s/
s

OCC-LSD

c assert throughput under no contention.

1 0.1 0.01 0.001 0.0001
0%

20%

40%

60%

80%

100%

Condition invalidation ratio

A
bo

rt
ed

tr
an

s. OCC-LSD+

d assert aborts under no contention.

1 0.1 0.01 0.001 0.0001
0K

3K

6K

9K

12K

15K

Condition invalidation ratio

C
om

m
it

s/
s 2PL

2PL-LSD

e assert throughput under high contention.

1 0.1 0.01 0.001 0.0001
0%

20%

40%

60%

80%

100%

Condition invalidation ratio

A
bo

rt
ed

tr
an

s.

f assert aborts under high contention.

Figure 4.8: Throughput and aborts on the hotkey (a,d) and assert microbenchmarks with
no (b,e) and high (c,f) contention.

and transactions blocking when attempting to read the value of the hot counter in 2PL.

At 100% contention, LSD’s throughput is ≈ 5× higher that 2PL and ≈ 30× more than

OCC.

Note that even when every transaction only increments its own private counter, the

LSD-aware variants still perform better than their standard counterparts: this is due to

the fact that the LSD’s tx-read operation does not communicate with the database (it

creates the respective future locally). Hence, LSD transactions incur in less communi-

cation rounds than standard transactions, which translated into an ≈ 1.3× increase in

throughput.

Contention with conditions. We now analyze the effect of contention in the presence of

conditions asserted with the tx-is-true operation. Like in the previous microbenchmark,

we loaded the database with a set of private counters and a single hot counter. These

counters are initialized with a parametrized value n, and a parametrized percentage of

56

4.4. EVALUATION

transactions access the hot counter while the remaining access their private counter. The

logic of the transactions consisted of decrementing the value of the counter if it remained

greater than zero, or restoring the its initial value otherwise. Unlike the previous experi-

ment, in this one we could control the contention that LSD transactions experienced on

the condition: the smaller the initial value of the counters, the higher the contention, i.e.,

the condition “the counter remains greater than zero” changes at a rate of 1
n , where n is

the parameterized initial value for the counters.

Figures 4.8c, 4.8e, 4.8d, and 4.8f, depict the throughput and abort percentage of each

protocol. For a scenario with no contention for either LSD or the standard interface, i.e.,

each transaction only accesses its private counter, the LSD variants incur in an overhead of

≈ 1.1–1.25× when compared to their standard counterparts (Figure 4.8c). This overhead

comes from the additional work performed by the tx-is-true operation, which is not

extracting additional parallelism in this experiment because there is no contention. We

also plot a version of the LSD-aware OCC (OCC-LSD+) that assumes the counter’s value

remains greater than zero after the decrement, i.e. it speculates the outcome of the tx-

is-true operation without contacting the database, as discussed in Section 4.3.3.2. The

effectiveness of the lsd+ variant depends on the success of its speculation. As expected,

the results in Figure 4.8c show that the throughput of the lsd+ variant increased when

we decreased the condition invalidation ratio, increasing throughput up to ≈ 1.3× that of

the standard protocols. The throughput increases because the number of aborts due to

failed speculation decreases, as shown in Figure 4.8d. Only the lsd+ variant aborts in this

experiment because each transaction accesses its own private counter.

Next, we examined the situation where all transactions access the hot counter. This is

the worse case scenario for the standard transactions, whereas LSD transactions can still

extract parallelism if the concurrent modifications to the counter do not keep invalidating

the condition. Figure 4.8e reports the observed throughput as a function of the condition

invalidation ratio. The performance of standard transactions is unaffected by the condi-

tion invalidation ratio because standard transactions only deal with concrete values when

accessing the counter, so all concurrent transactions conflict: OCC suffers from a high

percentage of aborts (Figure 4.8f) while 2PL suffers from a “queueing” effect when ac-

quiring the lock in the tx-read operation. Note that in this experiment the results for 2PL

are optimal somewhat inflated, because we disabled deadlock prevention for 2PL since

transactions only access a single key. With LSD, on the other hand, throughput increased

as there was more available parallelism to exploit, i.e., updates to the counter that would

not make its value fall below 1. In particular, as the abort percentage decreased (Fig-

ure 4.8f), the LSD-aware variant of OCC (resp. 2PL) achieved up to ≈ 17× (resp. ≈ 2×)

more throughput than its standard counterpart (Figure 4.8e). The lsd+ variant was able

to further boost the throughput gains to ≈ 30× the performance of OCC.

57

C
h
a
p
t
e
r

5
Concurrent state machine replication

using Pot+LSD

In this chapter we combine Pot (chapter 3) and LSD (chapter 4) to realize the vision of this

dissertation: executing requests concurrently in state machine replication. We evaluate

our implementation of a prototype using the TPC-C benchmark. [64]

The chapter is organized as follows. Section 5.1 is a primer on Pot and LSD. Section 5.2

discusses how LSD is combined with Pot. Section 5.3 describes our prototype and the

results of its experimental evaluation.

5.1 Background

5.1.1 Pot

This dissertation’s research proposes to extract concurrency from the state machine repli-

cation execution phase by executing requests as transactions. We argue that this approach

is attractive because it keeps the programming model unchanged: a simple, sequential,

programming model where the developer does not need to reason about the complex

subtleties of concurrency. The system deals with concurrency transparently and automat-

ically.

To realize our vision, however, it is not enough to simply execute requests as trans-

actions. The problem is that traditional concurrency control protocols that implement

serializability, [55] such as two phase locking [11] or optimistic concurrency control, [40]

perform two tasks simultaneously while transactions execute: (a) they compute the trans-

action serialization order (ordering), and (b) control the concurrent execution of trans-

actions to respect that serialization order (concurrency control). Since ordering is inter-

twined with concurrency control, the final transaction serialization order depends on

59

CHAPTER 5. CONCURRENT STATE MACHINE REPLICATION USING POT+LSD

the nondeterministic interleaving that occurs at runtime between transactions and thus

can, and likely will, vary across replicas. We refer to this execution model as traditional
transactions.

We address the problem of different serialization orders across replicas using pre-
ordered transactions. With preordered transactions the serialization order is independent

of the interleaving that may occur between transactions because, unlike traditional trans-

actions, preordered transactions already have a place in the serialization order before

they are executed. Conceptually, preordered transactions have a two-phase execution

model: (1) the ordering phase which defines every transactions’ place in the serialization

order, and (2) the execution phase where transactions execute concurrently in such a way

that the outcome is equivalent to their sequential execution in the predefined order.

State machine replication’s agreement phase maps directly to the transactions’ or-

dering phase: all replicas agree on a common serialization order. What is left is for

the concurrency control protocol in the execution phase to respect the predefined order.

Traditional concurrency control protocols cannot be used in this context because they

implement both ordering and concurrency control, so we propose a new concurrency

control protocol that can.

Our new concurrency control, which we call Pot (short for preordered transactions),

only performs concurrency control because the task of ordering transactions is offloaded

to the state machine replication’s agreement phase. Pot takes the serialization order

defined in the agreement phase and enforces that order.

We design Pot by modifying optimistic concurrency control, which works as follows.

An optimistic transaction consists of one, or more, speculative executions. A speculative

execution is divided into three phases: (1) the read phase, (2) the validation phase, and

(3) the write phase. The read phase records the objects read by the transaction in the

transaction’s read set. In the read phase, write operations do not modify the shared

state; instead the transaction defers its updates and logs them in its write set. Therefore

locations that are both read and modified occur in both the read and the write set. After

the read phase, the transaction undergoes a validation phase where it checks whether

any concurrently committed transaction’s updates overlap with its read set. If so the

transaction is aborted to respect serializability, and can be retried; otherwise it proceeds

to the next phase. Finally, the transaction enters the write phase where it atomically

updates all objects in its write set with the values buffered during the read phase.

The protocol just described provides the illusion that transactions execute one at a

time. However, the order in which transactions appear to execute is not deterministic

because it depends on the interleaving between transactions’ operations that will occur

at runtime. To adhere to the serial order predefined in the ordering phase, we make

two key observations: (a) optimistic transactions only modify shared state during their

write phase, and (b) each transactions’ place in the serialization order depends on the

relative order in which each transaction (atomically) performs its validation and write

phase. Therefore, we restrict transactions to execute their validation and write phases in

60

5.1. BACKGROUND

TA TB TC
Active

TA TC
Active

Serialized
T1 T2

Serialized
T1 T2 T3

T4 T5
ActiveSerialized

T1 T2

T3

T3

T5
ActiveSerialized

T1 T2 T4

TB commits T3 commits

Figure 5.1: Traditional transactions (left) vs. preordered transactions (right). The serialization
order of traditional transactions is unpredictable because active traditional transactions can com-
mit in any order, which is likely to be different across replicas. In contrast, the serialization order
of preordered transactions is predefined, and therefore deterministic across replicas.

the order defined in the state machine replication’s agreement phase, which guarantees

that the outcome is equivalent to the sequential execution in the order defined in the

agreement phase. We call this technique ordered commits.

While ordered commits on its own is enough to guarantee that the agreed upon

transaction order is respected, the protocol employs a set of techniques to guarantee

correctness, such as read and write sets, read set validation and deferred updates. With

optimistic concurrency control all transactions are executed using the aforementioned

techniques because any transaction may become the next transaction in the serialization

order, which is being defined as transactions execute. Using such techniques imposes

additional overhead when compared with an execution without any concurrency control.

However, in Pot the serialization order is predefined. Since Pot restricts the order in which

transactions commit, they may now have to wait for their turn to commit, leading to a

loss of parallelism. To mitigate this loss of parallelism, we make the key observation that

at any moment there is always a single transaction, which we refer to as fast, which is the

next transaction that is allowed to commit. We exploit the fact that the fast transaction is

the next transaction allowed to commit to execute it without most concurrency control

overheads. Hence, we distinguish between two types of transactions: fast and speculative.

We call this technique transaction modes.

A fast transaction is the only active transaction whose predecessors are all completed.

A fast transaction is the next, and only, transaction allowed to commit. It can be exe-

cuted more efficiently by merging the read and write phases and completely removing

the validation phase, thus eschewing most of the traditional optimistic techniques and as-

sociated overhead. A transaction whose turn to commit has not yet come is a speculative

transaction, and it follows the ordered commit protocol.

Figure 5.1 compares traditional transactions (left) to preordered transactions (right).

Under the traditional transactions model there are two disjoint sets: the set of serialized

(already committed) transactions, and the set of active transactions. Any transaction

from the active set can be the next transaction to commit and move from the active to

61

CHAPTER 5. CONCURRENT STATE MACHINE REPLICATION USING POT+LSD

1 begin
2 v ← read(stock)
3 if v ≥ qty then
4 v ← v − qty
5 write(stock, v)
6 commit
7 else
8 abort

a Traditional interface.

1 begin
2 �← read(stock)
3 if is-true({� ≥ qty}) then
4 4 ← {�− qty}
5 write(stock, 4)
6 commit
7 else
8 abort

b LSD interface.

Figure 5.2: Simplified transaction that buys qty amount of an item from an e-commerce appli-
cation using the (a) traditional API, and (b) LSD API. With the traditional API a committing
transaction is bound to a particular stock value, e.g. 42, so to ensure serializability the value can
not change after the read operation until the transaction commits. With the LSD API a committing
transaction never observes a concrete stock value during its execution, so to ensure serializability
the value can change as long as it remains ≥ qty until the transaction commits.

the serialized set. (In the example it is transaction TB.) In contrast, under the preordered

transactions model the active set is a subset of the serialized set: the serialization order

of all transactions is already established. Pot enforces this order using ordered commits,

and further uses transaction modes to distinguish active transactions between fast and

speculative transactions, depicted as a pentagon and squares, respectively.

To summarize, we propose to execute requests concurrently by executing them as

preordered transactions. Preordered transactions are serialized in a common order across

replicas during the state machine replication’s agreement phase, and then executed using

Pot to ensure the agreed upon order is respected.

For a more in depth presentation of Pot, please refer to chapter 3.

5.1.2 LSD

Since the research described in this dissertation proposes to extract concurrency using

speculative execution, achieving good performance depends on whether speculation is

successful or not. For workloads where transactions seldom conflict with each other,

speculation is successful by definition. We seek to also improve the success of speculation

for transactions that conflict with one another.

Consider the example in Figure 5.2a that depicts a simplified portion of the TPC-C

new order transaction, [64] which implements the action of buying a certain quantity qty

of items. If the item’s stock
(
v ← read(stock)

)
is enough to fulfill the order

(
v ≥ qty

)
, the

stock value decreases by qty
(
write(stock, v − qty)

)
.

This example illustrates how the read/write interface fails to convey the semantics of

the transaction to the system, e.g., how the transaction’s behavior depends on the values

it reads, or how it computes the values it writes. Instead, from the point of view of the

system, transactions are a sequence of opaque read/write operations.

62

5.1. BACKGROUND

To understand how this can be a limiting factor, consider the situation where the

current stock value is 42 (stock), and the quantity to order is one (qty). When the trans-

action issues the read(stock) operation, it returns the value 42 to the transaction. Since

the system does not know what the transaction will do with the returned value, it must

be conservative to account for all possible situations, e.g. the transaction only executing

some operations depending on the returned value, or using the returned value to compute

the value of a subsequent write. As a consequence, the concurrency control protocol (Pot)

records the read operation so that the system can check that the stock object’s value is the

same (42) when the transaction attempts to commit. If meanwhile another transaction

modifies stock, then the transaction that observed the now-stale stock value fails to com-

mit because the modification invalidates branching decisions or computed values by the

transaction that observed the value 42.

As this example shows, a central part of enforcing transaction isolation is ensuring

that the state that a transaction observes (i.e. the values returned by read operations)

remains unchanged throughout its execution. Our key insight is to question whether a

transaction really needs to observe a specific state during its execution. In other words, in

our running example, does the read(stock) operation really need to expose a particular

state to the transaction, e.g. 42? With the current interface the answer is yes. Otherwise,

transactions cannot have conditional branches that depend on the system’s state, nor

perform updates to the state that are a function of itself. Going back to our example, the

transaction could not check whether there is enough stock nor compute the new stock

value.

In this research we get around these limitations by rethinking the transactional API

in order to provide transactions that allow for greater concurrency. We call our rethought

interface LSD, short for lazy state determination.

The key observation behind LSD is that, frequently, transactions do not need to ob-

serve a concrete state to execute most of their logic. Thus, we propose alternative seman-

tics for the read operation. Specifically, the read operation should not expose a specific

system state to the transaction by returning a concrete value, but will instead return a

future. [7]

A future is an object that acts as a proxy for a value that is initially unknown. In

our case, a future symbolizes the value of a specific state object. This means that the

system promises the transaction to resolve the future’s value, but does not do it right

away. In particular, we want to defer evaluating futures until the transaction attempts

to commit (lazy evaluation [36]) to maximize concurrency. (Note that the traditional

semantics of the read operation is equivalent to returning futures that are immediately

resolved.) Returning to our running example, we depict this modification in Figure 5.2b,

and represent the future that symbolizes the stock value by �.

The proposed change to the semantics of the read operation has a clear benefit: if

a transaction does not observe a specific system state, other transactions can modify it

without breaking the isolation guarantees of the first transaction. However, this raises the

63

CHAPTER 5. CONCURRENT STATE MACHINE REPLICATION USING POT+LSD

problem of determining how can a transaction use futures. This can, in turn, be split into

two main challenges. The first is how can a transaction perform conditional branching

based on futures. The second is how can a transaction compute values that depend on

futures. For instance, how can the logic of our example transaction decide whether it can

fulfill the order if it does not know the stock value, and how can the transaction compute

the new stock value? (A naive approach is to eagerly resolve futures when a transaction

requires their value, but this again results in restricting concurrency.)

To solve the first challenge, we observe that a future symbolizes the value of a par-

ticular object. While we would like that a transaction is not able to directly observe the

value of a future, we can still ask the system whether a future’s value respects a certain

condition. For example, the transaction can ask the system whether the stock value is

greater than qty, and make a control flow decision depending on the system’s answer.

To support this functionality we introduce a new operation, is-true(p), which, given a

predicate function p over one (or more) futures, returns whether the predicate holds or

not. We show the is-true operation using the {� ≥ qty} predicate in Figure 5.2b. Note that

while the is-true operation effectively exposes system state to the transaction, it exposes

an abstract state (the stock is greater than qty) rather than a concrete one (the stock

is 42), which has the potential to allow for more concurrency, e.g. by allowing concurrent

modifications of the stock value as long as it remains ≥ qty after all the modifications.

The second challenge is how can a transaction perform computations using futures.

To solve this challenge, we observe that while a transaction cannot perform the actual

computation with futures, it can define the necessary computation and let the system

perform it when the transaction commits and the futures resolve to concrete values. For

example, the transaction can define that the new stock value is whatever value its future

ends up resolving to minus qty.

To support this behavior we change the semantics of the write operation so that, in-

stead of receiving the concrete new value for an object, it receives a function that com-

putes the concrete value when evaluated. This function has the important property that

it can depend on the values of any future, since the system knows how to resolve them.

Furthermore, write functions are lazily evaluated by the system when the transaction

commits, so that the futures that the functions depend on may remain unresolved. In

Figure 5.2b, we represent this function as {�− qty}. The argument of the write operation

is the unevaluated function {�− qty}. The system evaluates the function and applies its

value when the transaction commits.

The proposed changes to the semantics of the read and write operations and the addi-

tion of the is-true operation allow the system to provide transactions whose speculation

is more successful than was possible before, for two main reasons.

The first is that we decrease the duration of time that a transaction requires isolation.

With the traditional interface, the transaction requires isolation from the moment when

it first observes system state (with the traditional read operation semantics) until the

transaction attempts to commit. In contrast, with LSD, the transaction only requires

64

5.2. COMBINING POT AND LSD

isolation during its commit operation if it does not require any specific conditions.

The second reason is that we relax the set of concurrent transactions that are forced

to abort when executing concurrently with some transaction to guarantee serializability.

Even when a transaction t needs to test some predicate over objects, LSD’s is-true oper-

ation still allows concurrent transactions to modify those objects without requiring t to

abort as long as these modifications do not invalidate t’s previously asserted predicates.

This contrasts with the traditional interface that prevents any modifications, whether

they violate such predicates or not.

That said, it is important to stress that the LSD API is not a panacea. Transactions that

must observe a concrete state can not reap LSD’s benefits and need to resolve the required

futures, falling back to the standard read semantics, e.g. because they externalize values

to the user, or require concrete states such as stock = 42. However we believe that a large

class of transactions are able to take advantage of LSD.

To summarize, we propose to alter the transactional API to expose more information

about the transactions’ semantics to the system, in order to increase the success of specu-

lation. The new API allows transactions to execute against an abstract state, which allows

for more concurrency without invalidating speculation. Transactions delay computations

that depend on the abstract state until commit time, when the abstract state materializes

into a concrete state over which the computations are performed.

For a more in depth description of LSD, please refer to chapter 4.

5.2 Combining Pot and LSD

A Pot speculative transaction only commits after being promoted to fast mode. The

promotion can happen either when the transaction is waiting for its turn to commit, or

at runtime. Regardless of when the promotion happens, a Pot transaction performs two

steps when it transitions to fast mode. The first step is to validate whether the speculation

that the transaction performed while in speculative mode still holds, i.e. none of the

elements in the read set was modified since the transaction observed their values. The

second and final step is to write back the values the transaction buffered in its write set

while in speculative mode.

Figure 5.3 shows the transaction protocol that combines Pot and LSD. Essentially, with

the addition of LSD, the Pot+LSD transaction performs three steps when it transitions

to fast mode. Like the Pot-only transaction, the first step is to validate whether the

speculation that the Pot+LSD transaction performed while in speculative mode still holds.

In the case of a Pot+LSD transaction, besides validating that the read set remains valid, the

Pot+LSD transaction additionally checks whether the transaction’s condition set remains

valid, i.e. evaluation its conditions return the same result that the transaction observed

while in speculative mode. For example, if the transaction performed some actions during

its speculative execution that depended on tx-is-true({� ≥ 0}) returning true, then the

reevaluation of � ≥ 0 must return true again for the speculative execution to be correct.

65

CHAPTER 5. CONCURRENT STATE MACHINE REPLICATION USING POT+LSD

1 tx-begin
2 get sequence number

3 tx-read(key)
4 generate future �
5 add � to Rf

6 return �

7 tx-read(4)
8 resolve 4 to 〈value, version〉
9 add 〈value, version〉 to R

10 return tx-read(value)

11 tx-write(key, �)
12 add 〈key, �〉 to W

13 tx-write(4, �)
14 add 〈4, �〉 to Wf

15 tx-is-true(�)
16 rvalues← values necessary to resolve �
17 resolve � to result using rvalues
18 add 〈�, result〉 to C
19 return result

20 tx-commit
21 wait for turn

22 // fast mode’s signal handler is executed

23 // fast mode’s tx-commit is executed

a Pot+LSD transaction in speculative mode.

1 when turn is signaled
// step 1: validation

2 validate R
3 validate C

// step 2: resolution
4 resolve Rf

5 resolve W
6 resolve Wf

// step 3: write back
7 write back W
8 write back Wf

9 tx-read(key)
10 generate future �
11 return �

12 tx-read(4)
13 resolve 4 to 〈value, −〉
14 return tx-read(value)

15 tx-write(key, �)
16 resolve � to value

17 write value to key

18 tx-write(4, �)
19 resolve 4 to key

20 resolve � to value

21 write value to key

22 tx-is-true(�)
23 rvalues← values necessary to resolve �
24 resolve � to result using rvalues
25 return result

26 tx-commit
27 signal next transaction’s turn

b Pot+LSD transaction in fast mode.

Figure 5.3: The Pot+LSD transaction protocol. Figure 5.3a shows the speculative mode.
Figure 5.3b shows the fast mode. R denotes the read set. W denotes the write set. Rf de-
notes the future read set. Wf denotes the future write set. C denotes the condition set.
The protocol steps that pertain to Pot are highlighted .

The second step is the resolution step. In this step the Pot+LSD transaction resolves

all the futures in the future read set, write set, and future write set. These futures must

be resolved to concrete values before the transaction can apply its updates to the state.

For example, if the transaction increments a counter, it performs �← tx-read(counter)

followed by tx-write(counter, {�+1}). Resolving the future read set evaluates the counter’s

future into a concrete value, e.g. � = 42. Resolving the write set evaluates the counter’s

new value function to 43, i.e. �+ 1 = 42 + 1 = 43.

The third and final step, like the Pot-only transaction, is to write back the values that

the transaction buffered while in speculative mode. Those values were kept abstract (as

futures and lazily evaluated functions) while the transaction was in speculative mode,

66

5.3. EVALUATION

but have been resolved by the previous step into concrete values that can be written back.

Besides the difference in the promotion algorithm, a Pot+LSD transaction in fast mode

resolves the futures passed to its tx-write operations, so that it can immediately perform

the corresponding writes.

5.3 Evaluation

We implemented a transactional key-value store prototype. The prototype is imple-

mented as a Seastar [59] server, and data is stored in memory. Clients submit requests to

the server over the network, which executes the requested commands as transactions. The

transactions are implemented using the typical API (tx-begin, tx-read, tx-write, tx-commit,

and tx-abort operations) or LSD’s API which features our proposed tx-read, tx-write, and

tx-is-true operations.

We implemented several concurrency control protocols as baselines. The Sequential

baseline executes transactions one at a time. It represents the classical fault-tolerant

state machine replication approach, where servers execute every transaction sequen-

tially. Next, we implemented the classical OCC and 2PL baselines. These represent a

typical fault-prone, unreplicated, server which executes transactions concurrently in a

non-deterministic fashion. Finally, we implemented Pot and a combination of Pot with

LSD (Pot+LSD). Pot represents our first contribution (chapter 3) that uses speculative con-

currency to improve the execution phase performance of a fault-tolerant, state-machine-

replicated, server. Pot+LSD represents our full vision which improves the effectiveness

of Pot’s speculation using the LSD API (chapter 4) to avoid conflicts.

5.3.1 Setup

We evaluated our prototype using the TPC-C benchmark with two workload configura-

tions: one with lower, and one with higher contention.

The evaluation was run on a private gigabit ethernet cluster. The server runs on a

NUMA machine with two 6-core Intel Xeon E5-2620 processor and 64GB of RAM. Clients

run on the various remaining machines with AMD and Intel processors, and communicate

with the server over the network.

Each data point reports the average of 5 runs.

5.3.2 Low contention

We show the result of the lower contention workload first. This workload was achieved

by setting the number of warehouses to 32. The number of warehouses is the parameter

that governs the amount of contention in the workload: the higher it is, the lower the

contention.

Figure 5.4 shows the results we obtained. The x-axis shows the number of clients

submitting requests to execute commands, i.e. TPC-C transactions, to the server. The

67

CHAPTER 5. CONCURRENT STATE MACHINE REPLICATION USING POT+LSD

0 10 20 30 40 50 60 70 80
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25
·104

Number of clients

T
hr

ou
gh

p
u

t
(c

om
m

it
s/

s)

Sequential 2PL
OCC Pot
Pot (+fast) Pot+LSD
Pot+LSD (+fast)

Figure 5.4: Performance of TPC-C using a workload with low contention (32 warehouses).

y-axis shows the server’s throughput in tens of thousands of committed transactions per

second.

Sequential. This series represents the classical fault-tolerant state machine replication

approach, i.e. the server executes every transaction sequentially. This series is the baseline

our contributions want to improve on.

As expected, its throughput remains flat when we increase the number of clients. The

throughput we obtained with 80 clients was ≈ 2.5K committed transactions per second.

2PL and OCC. These series represent a typical fault-prone, unreplicated, server which

executes transactions concurrently in a non-deterministic fashion using the 2PL and OCC

protocols, respectively. These series serve as an upper bound to the gains we can expect

from our contributions, because 2PL and OCC produce non-deterministic serialization

orders.

As expected, by increasing the number of clients, the server’s throughput also in-

creases. The throughput we obtained with with 80 clients was ≈ 20K and ≈ 22.5K com-

mitted transactions per second when using 2PL and OCC, respectively. This is ≈ 8×
the throughput we obtained with Sequential, which highlights the dire choice between

performance and fault tolerance.

Pot. This series represents the first half of our contribution to improve the performance

of a fault-tolerant, state-machine-replicated, server.

The throughput we obtained with 80 clients was ≈ 10K committed transactions per

second. This result shows that the throughput of the fault-tolerant server using Pot is

≈ 2× worse than its fault-prone counterpart using 2PL/OCC. But considering that the

Sequential baseline is ≈ 8× worse than 2PLL/OCC, this means that Pot was ≈ 4× better

than Sequential. We consider this to be a worthwhile result, especially considering that it

68

5.3. EVALUATION

requires no additional burden from the application developer.

Pot+LSD. This series represents our full contribution to improve the performance of a

fault-tolerant, state-machine-replicated, server. However, recall that the purpose of LSD

is to improve the effectiveness of Pot’s speculation in the presence of contention. This

workload is a low contention one, so the results we obtained serve to show the price we

are paying for LSD when it is not really needed, i.e. low contention scenarios.

The difference is most noticeable in the throughput we obtained with 48 clients, where

Pot+LSD’s throughput is ≈ 80% of Pot’s throughput. Although Pot+LSD imposed ≈ 20%

overhead over Pot, this workload is a worst-case scenario for LSD because there is little

to no contention. In the next section we evaluate a higher contention workload, where

Pot+LSD is ≈ 3× better than Pot, which we argue make the ≈ 20% overhead of Pot+LSD’s

in this workload an acceptable trade-off.

Pot (+fast) and Pot+LSD (+fast). These series explore what is the benefit of augmenting

our approach with application-specific knowledge, by allowing the application developer

to specify which transactions commute. Pot uses this information to execute consecutive

commutative transactions in fast mode simultaneously.

For the particular case of our prototype, we specified that TPC-C transactions that

operate over distinct warehouses are commutative—the warehouse identifier is an argu-

ment of every transaction. Taking advantage of this simple information about transaction

commutativity led to Pot (+fast) and Pot+LSD (+fast) committing ≈ 15K transactions

per second. This is ≈ 66% of the throughput of the fault-prone 2PL/OCC series, and an

improvement of ≈ 1.5× over Pot and Pot+LSD.

5.3.3 High contention

In this section we show the result of the higher contention workload. This workload was

achieved by setting the number of warehouses to 1.

Figure 5.5 shows the results we obtained. As in the previous Section, the x-axis shows

the number of clients submitting requests to execute commands, i.e. TPC-C transactions,

to the server. The y-axis shows the server’s throughput in tens of thousands of committed

transactions per second.

Sequential. The throughput of this series is indistinguishable from its throughput on

Figure 5.4, i.e. ≈ 2.5K committed transactions per second. This is because Sequential

executes transactions one a time, so the contention in the workload is irrelevant.

2PL. The throughput we obtained with with 80 clients was ≈ 10K committed transactions

per second. This is ≈ 4× the throughput we obtained with the classical fault-tolerant

Sequential approach.

OCC. It is well known that OCC’s optimistic approach is not suitable for high contention

scenarios. The results we obtained corroborate this fact once again. The throughput we

obtained with 80 clients was actually worse than Sequential, due to amount of wasted

work OCC performs.

69

CHAPTER 5. CONCURRENT STATE MACHINE REPLICATION USING POT+LSD

0 10 20 30 40 50 60 70 80
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25
·104

Number of clients

T
hr

ou
gh

p
u

t
(c

om
m

it
s/

s)

Sequential 2PL OCC Pot Pot (+fast)
Pot+LSD Pot+LSD (+fast)

Figure 5.5: Performance of TPC-C using a workload with high contention (1 warehouse).

Pot. The throughput we obtained with 80 clients was ≈ 2.5K committed transactions

per second, which is very close to Sequential. However, recall that Pot uses speculative

techniques that struggle in the presence of contention, which is the case of this workload.

The second half of our contributions, LSD, aims to improve Pot in these situations.

Pot+LSD. By combining Pot with LSD, the throughput we obtained with with 80 clients

was ≈ 7.5K committed transactions per second. This is ≈ 3× better than Pot and Sequen-

tial, and is ≈ 75% of the throughput achieved by 2PL, which we argue is a great result.

Pot (+fast) and Pot+LSD (+fast). For this particular experiment, TPC-C is configured

with a single warehouse. These series produced virtually the same results as Pot and

Pot+LSD. This is expected, because all transactions operate over the same warehouse

and are therefore deemed as non-commutative, which does not provide any improvement

over Pot and Pot+LSD.

70

C
h
a
p
t
e
r

6
Related work

This chapter contrasts the contributions of this dissertation against related work. Sec-

tion 6.1 presents related techniques to achieve deterministic execution of multithreaded

programs. Section 6.2 discusses related work that also enables concurrent request exe-

cution in the state machine replication model. Section 6.3 discusses other approaches to

concurrency control and improvements to the transactional API to reduce conflicts. Each

Section contrasts relevant related work with the contributions in this dissertation.

6.1 Deterministic multithreading

Many deterministic multithreading systems for programs using lock-based synchroniza-

tion have been proposed, such as Kendo, [53] CoreDet, [9] Dthreads, [45] and Parrot. [15]

At their core, they all follow a similar approach to guarantee determinism, which is to

ensure that threads acquire locks in a total order that is deterministic across reexecutions.

OptSCORE [33] is an example of a system that applies a deterministic multithreading

system for lock-based synchronization to state machine replication.

Grace [10] ensures deterministic execution of programs that specifically use a struc-

tured fork-join style parallelism. Essentially, it executes the entire work of each thread as

a transaction, and forces the transactions to commit in thread-creation order.

DeSTM [56] targets programs that use Software Transactional Memory (STM). It

adapts the double barrier technique used by many deterministic lock-based systems to

STM. In a nutshell, threads execute in rounds, where a round is comprised of one trans-

action per thread. A thread can only begin its transaction of round n when all the other

threads have committed their transactions from round n−1, and a thread can only commit

its transaction of round n when all the other transactions have started their transactions

from round n—see Figure 3.9.

71

CHAPTER 6. RELATED WORK

Discussion. If the transactional concurrency control protocol is implemented using

locks, deterministic transactions could be implemented using the aforementioned deter-

ministic multithreading system for lock-based programs. However this approach has sev-

eral drawbacks. First, it cannot be applied to off-the-shelf Hardware Transactional Mem-

ory (HTM), because the concurrency control is implemented in the hardware. Second, it

fails to exploit the semantics of transactions to reduce the overhead of ensuring determin-

ism, because determinism is enforced by the lock acquisition order, and the locks are at a

lower level of abstraction than transactions. Pot does not suffer from these drawbacks. It

is applicable to both STM and HTM, and it operates at the transaction level, and employs

its fast transaction mode to reduce overhead.

Compared to Grace, Pot is not restricted to the structured fork-join style parallelism,

and takes advantage of the deterministic order to improve efficiency via fast transactions.

One of the key differences between DeSTM and Pot is that in Pot the sequencer estab-

lishes a deterministic transaction serialization order that is enforced, i.e., the final out-

come is as if transactions executed in the serial order defined by the sequencer. DeSTM, on

the other hand, uses a token-passing scheme that defines a deterministic order in which

threads attempt to commit transactions. Thus, the final outcome is always equivalent

to the same transaction serialization order, although that order is unknown beforehand.

As a consequence of this design, DeSTM orders both aborts and commits and requires

conflicts to be deterministic. Pot only orders commits, and works whether conflicts are

deterministic or not. Pot’s design allows it to achieve better performance than DeSTM,

which is important for the objective of this dissertation’s research: improving perfor-

mance. We argue that requiring deterministic conflicts is a major drawback, since most

STM implementations and all existing HTM processors suffer from false conflicts. To ac-

tually achieve deterministic execution, the DeSTM authors had to disable Address Space

Layout Randomization, an operation system security technique involved in the protection

of buffer overflow attacks.

6.2 State machine replication

Below we discuss related work that also allows replicas to execute requests concurrently.

We group the related approaches in two broad categories: those that rely on application-

specific information, and those that do not.

6.2.1 Using application-specific information

In the first category we have systems that require application-specific information about

commutativity between operations to decide which operations shall execute concurrently.

CBASE [39] proposes to add a parallelizer phase between the agreement and execution

phases. In the parallelizer phase, each replica individually analyses the incoming requests

according to application-specific information to identify operations that can execute

72

6.2. STATE MACHINE REPLICATION

concurrently. If the information deems that two (or more) operations commute, then the

system executes them concurrently.

Eve [37] also relies on a parallelizer to identify commutative operations. But unlike

CBASE, Eve tolerates an incorrect parallelizer by running an additional verification phase

after the execution phase. Replicas compute a digest of their state as part of the execu-

tion phase, an then run an agreement protocol to agree on a digest (and therefore final

state) deemed correct. All replicas rollback and execute the operations sequentially if the

verification phase is unable to reach agreement on a final state. Otherwise, the correct

replicas transfer their state to the replicas that diverged.

Marandi et al. [48, 49] and Alchieri et. al [1] propose to partition the replica state.

Operations are mapped to the partitions they access, and the system executes operations

that access disjoint partitions concurrently.

Opt-PSMR [47] also relies on mapping operations to the partitions they access, but

allows developers to define a conservative mapping that must be correct and a more ag-

gressive, optimistic, mapping that may not always be correct. Replicas tolerate wrong

optimistically-mapped operations by running an application-specific “safety check” pro-

cedure before execution. The procedure decides whether the optimistic mapping is cor-

rect given the operation in question and the current replica state. If not, the operation is

resubmitted to the agreement phase and falls back to the conservative mapping.

Discussion. Distilling the systems presented in this section gives us their common core

idea: an oracle is responsible for identifying commutative operations, and the system re-

lies on the oracle’s output to know which operations to execute concurrently. The concrete

oracle all the systems propose is the developer. In general, it is unclear how realistic it is

for developers to accurately identify commutative operations, or specify the safety checks.

While an automated oracle is possible in theory, e.g., via static analysis techniques, [19] it

remains unclear how general and feasible an automated approach is. The research in this

dissertation proposes to execute operations concurrently using speculative techniques.

This allows the system to execute operations concurrently without necessarily relying

on the developer. Nonetheless, the proposal in this dissertation may still rely on the

developer as an optimization—e.g. Pot (+fast) and Pot+LSD (+fast) series on Figures 5.4

and 5.5.

6.2.2 Without using application-specific information

In the second category we have systems that do not require application-specific informa-

tion about the operations to execute them concurrently. The proposal in this dissertation

plan falls in this category.

Calvin [63] identifies commutative operations using static analysis to identify their

read and write sets before execution. Knowing these sets before execution allows Calvin

to acquire all the appropriate locks for an operation before its execution. Commutative

73

CHAPTER 6. RELATED WORK

operations execute concurrently because they do not perform conflicting lock acquisitions,

while operations that conflict on some object are serialized during the lock acquisions.

For operations whose read and/or write sets are dynamic, Calvin requires the developer

to specify, for each operation, a “helper” read-only query that performs the necessary

reads to discover the full read and write sets. When Calvin receives an operation whose

read and/or write set is dynamic, Calvin executes the “helper” query and submits the

operation to the agreement phase. When the operation reaches the execution phase,

Calvin checks whether the “helper” correctly identified the read and write sets. If so,

Calvin proceeds to execute the operation; otherwise, the “helper” is re-executed and

Calvin re-submits the operation to the agreement phase.

Rex [32] requires developers to implement thread-safe operations using locks. Rex

follows an “execute-follow” approach where one replica, the primary, executes operations

concurrently and collects a trace of the order in which the operations acquire locks. The

trace is shipped to the other replicas, the secondaries, and each replica uses the trace to

grant the locks in the same order when executing the operations, effectively following the

primary.

Kim et al. [38] briefly point out that they allow developers to specify the order in

which they want the operations to commit. However, no information is provided as to

how this is done, nor how to do it efficiently.

Discussion. The approach of Calvin and Opt-PSMR [47] is the same, but Calvin is a

specific realization of the approach in the context of databases. (Knowing the full read and

write set allows one to define the conversative mapping in Opt-PSMR, Calvin’s “helper”

is equivalent to the optimistic mapping in Opt-PSMR, and Calvin’s correctness test of the

“helper” is akin to Opt-PSMR’s “safety check.”) In the context of databases, an automated

oracle that is able to identify if two operations commute is feasible because objects are

accessed in a structured way, e.g. accessed by primary key. But in a general-purpose

system, objects may be accessed by following heap pointers which makes the feasibility

of an automated oracle questionable. This dissertation’s research proposes an approach

that is amenable to both the context of database and general-purpose systems, where

designing an automated oracle can range from difficult to impossible.

Rex is a sort of hybrid active-passive replication scheme where, despite the fact there

is redundancy of computation because secondaries also execute operations, failures in the

computation of the primary are not tolerated by the system. For instance, if the primary

ships a trace that “does not make sense” to the secondaries, it appears that the secondaries

would hang, or crash. (Rex’s paper does not discuss these situations.) Unlike Rex, this

dissertation’s research proposes an approach where every replica is equivalent so there

are no central points of failure.

Finally, we propose an approach akin to what Kim et al. describe. But the research in

this dissertation develops the idea fully, not only detailing how to ensure that operations

74

6.3. TRANSACTIONS

execute concurrently in such a way that is equivalent to the order that all replicas agreed

upon, but also how to do so efficiently.

6.3 Transactions

Given that the idea in this dissertation’s research is to execute operations concurrently

as transactions under the state machine replication model, it is important to revisit their

API and concurrency control protocols to ensure that we are able to reap the available

concurrency as much as possible. Below we discuss related work about concurrency

control protocols and related work that revisits the API to achieve more concurrency.

6.3.1 Concurrency control

Timestamp ordering [11] assigns each transaction a timestamp. When a conflicting access

occurs, the concurrency control protocol aborts the transaction with the lowest timestamp

to resolve the conflict. Whenever a transaction aborts it restarts with a more recent

timestamp.

Discussion. At a first glance it may appear that timestamp ordering can be made to

provide the same guarantees as Pot by assigning transactions the “right” timestamps

that would remain unchanged despite aborts. For example, consider an agreed-upon

order of Ta→ Tb→ Tc. It seems that assigning timestamp(Ta) = 3, timestamp(Tb) = 2,

and timestamp(Tc) = 1, would enforce the desired serialization order. However that is

not true, because the serialization order that timestamp ordering computes is, just like

the other traditional concurrency control protocols, dependent on the nondeterministic

interleaving that occurs at runtime between transactions. For instance, imagine that

Ta reads, and Tb writes, object x. If Ta issues its read of x before Tb issues its write to x,

then Tb will abort if it attempts to write x before Ta commits. In this case the protocol

ensures Ta→ Tb. However, if Tb issues its write to x and commits before Ta attempts

to read x, then Ta’s read will observe Tb’s write. This situation implies Tb→ Ta, which

violates the agreed-upon order.

6.3.2 Increased concurrency

Salt [69] exposes more concurrency using nested transactions. It requires developers to

decompose top-level ACID transactions into alkaline subtransactions, whose modifica-

tions become visible to other alkaline subtransactions after they commit, but before the

top-level ACID transaction commits. Callas [70] automates Salt’s methodology using

complex static analysis and an iterative process to find good transaction decompositions

using heuristics.

Quro [71] is a compiler that reorders the transaction logic to issue contentious opera-

tions as late as possible in the logic, i.e. right before the commit operation. Quro requires

75

CHAPTER 6. RELATED WORK

an initial profiling run to identify which operations are contentious using heuristics. The

reordering has the potential to decrease the contention window between transactions.

A family of approaches such as versioned boxes, [13] transactional boosting, [34]

CRDTs, [61] Bumper, [21] and Doppel, [51] extract concurrency by offering higher level

update operations in the API (e.g. an increment operation). Transactions should use

these operations instead of performing read-modify-write patterns. The idea is that

transactions that conflict due to some read-modify-write operation on the same object

can be made to commute by using the higher level operations instead.

Discussion. Salt requires developers themselves to decompose ACID transactions into

alkaline subtransactions to extract concurrency. This requires a deep understanding of

the difficult subtleties of concurrent programming in order to do safely. In contrast, this

dissertation’s research proposes to extract concurrency by enriching the API in a way that

does not require any fundamental increase in complexity to the developer to use the API.

Callas requires complex static analysis of the logic of all transactions, and Callas’ final

transaction decomposition is ultimately tied to a particular workload. If the workload

changes, or if new transactions are added, the entire process needs to be redone. This

dissertation’s proposal allows the system to extract concurrency at runtime, so it does

not rely on any static analysis. Furthermore, it is dynamic: new transactions can execute

safely at any time.

Quro also suffers from drawbacks of being a static approach, e.g. requires reprofiling

and recompiling every time the set of transactions changes. Furthermore, Quro may

not be able to reorder contentious operations due to data dependencies. LSD with its

future and functions can behave as a “version” of Quro that is able to reorder contentious

operations until commit time even when there are data dependencies, by delaying both

the updates (LSD functions) and the data on which they depend (LSD futures).

The effectiveness of the approaches based on higher level operations depends on at

least two factors.

The first factor is that there must exist suitable operations to allow transactions to

replace their contentious read-modify-write patterns with higher level operations. For

instance, to use such approaches successfully on the example of Figure 4.1a, we need an

operation that can encapsulate the read of the stock value, the check of whether there is

enough stock, and the update of the stock value
(
e.g. decr_x_if_gte_y(id, x, y)

)
. Other

scenarios will require their specific operations. Such an API can quickly become unwieldy.

LSD provides futures and a set of operators to be used inside LSD functions instead. This

allows transactions to compose futures and the available operators to specify their logic.

Transactions can obtain the same result of the approaches based on higher level operations

using LSD’s building blocks without the need of an overly complex API.

The second factor is that the transactions’ logic must not require observing contentious

state. In this case, higher level operations can not help because the execution of the

transaction logic will be tied to the particular state it observes. For example, consider

76

6.3. TRANSACTIONS

the TPC-C benchmark’s [64] new-order transaction. In it, new orders are assigned a

monotonically increasing numeric identifier, which is used not only to identify the new

order in question, but also in other subsequent writes. In order to use the identifier in

the subsequent writes, the transaction needs to observe the concrete identifier to pass it

along to the writes. The approaches based on higher level operations are unable to extract

concurrency in this example because they require transactions to operate over a concrete
state. LSD allows transactions to operate over an abstract state (a future of the identifier)

and even pass it along to writes inside LSD functions.

77

C
h
a
p
t
e
r

7
Conclusion

In this chapter we conclude the dissertation with some final remarks about the contribu-

tions described in the previous chapters, and outline future research directions that build

atop the research reported in this dissertation.

In this research we investigate how to improve the performance of systems that tol-

erate faults, because fault tolerance is paramount due to the increasing scale at which

computing systems operate. Concretely, we focus on fault-tolerant systems that use the

state machine replication methodology. We propose to improve the performance of a

state-machine-replicated system by taking advantage of multicore processors to execute

multiple requests concurrently. However, there is an inherent tension between the state

machine replication approach to fault tolerance and the ability to exploit the underlying

hardware parallelism in todays multicore computer architectures. This tension exists

because, on one hand, the state machine replication paradigm has a safety requirement

that the outcome of the execution of requests has to be deterministic. On the other hand,

concurrent execution is fundamentally non-deterministic. In this research we tackle this

tension and propose a solution to it. In a nutshell, our solution is to execute requests con-

currently, but control their concurrent execution in a way that ensures that the outcome

is deterministic, as required by the state machine replication model.

The main challenge of our solution is how to control the execution to ensure a deter-

ministic outcome. This challenge is addressed by our first contribution, Preordered trans-

actions (Pot). The idea behind Pot is to execute the requests as speculative transactions

that respect the state machine replication model, i.e. appear to execute sequentially in the

agreed-upon order despite executing concurrently. To understand how Pot achieves this,

it is important to remember that the concurrent execution of transactions is mediated

by a concurrency control protocol. A typical concurrency control protocol ensures that,

although transactions execute concurrently, the final outcome is as if they executed one

79

CHAPTER 7. CONCLUSION

at a time in some order—the keyword being some. Basically, any order is acceptable, so

if the replicas execute the requests (transactions) concurrently, it is entirely possible that

each replica may produce a different final outcome. Pot proposes a new concurrency

control protocol that ensures that the final outcome of executing a set of transactions

concurrently is as if the transactions executed one at a time in a particular order. In this

case, that order will be the one that the replicas agreed on, hence respecting the state

machine replication’s safety requirement.

Succinctly, Pot achieves its goal by executing transactions speculatively, but commit-

ting their effects in the predefined order. The effectiveness of this approach is tied to the

success of the speculative execution. If speculation fails constantly, we cannot expect to

reap any performance benefits, so it is desirable for the speculation to succeed. Improv-

ing the success of the speculative execution is the objective of our second contribution,

Lazy State Determination (LSD). LSD provides an enhanced transactional API that per-

mits transactions to execute their logic over an abstract state, which increases the success

of speculation. For example, consider a transaction that implements the withdrawal of

money from a bank. Using the typical API, the transaction first observes what the cur-

rent balance is, and if there is enough money, subtracts the withdrawal amount from the

observed balance to calculate the new balance, and updates the balance to its new value.

If some other transactions modifies the balance after the withdrawal transaction observes

it, the computation performed by the withdrawal transaction will be incorrect, and thus

its speculation unsuccessful. For instance, imagine that the transaction wants to with-

draw 10€ and that it observes a balance of 100€. Meanwhile, the balance is increased

to 110€. The withdrawal transaction will compute the new balance to be 90€: the bal-

ance it observed, 100€, minus the amount to withdraw, 10€. Updating the balance of

90€ effectively erases the 10€ increase that occurred meanwhile, which is clearly wrong.

Hence, the speculation was unsuccessful.

To understand how LSD can help improving the success of the speculative execution,

note that in our withdrawal example the transaction needs to observe the current balance

do decide if there is enough money. Unfortunately, as soon as the balance is observed,

any modification to its value will cause the transaction’s speculation to fail. With LSD,

instead of observing what is the actual balance, the transaction can ask the system if there

is enough balance to withdraw, i.e. if the current balance is greater than 10€. At this

point, with LSD, the transaction’s speculation only depends on the balance being greater

than 10€, which allows more concurrency than depending on the balance being exactly
100€.

The next important step is the part where the withdrawal transaction computes the

new balance value. If the transaction needs to observe the balance to compute the new

balance value, we are back to square one. Thus, with LSD the transaction can tell the

system how to compute the new balance value, i.e. whatever the balance is minus 10€, and

the system will perform that computation when the transaction commits. This running

example shows how LSD can improve speculation by executing its logic over an abstract

80

state—the balance is greater than 10€, the new balance will be whatever it currently is

minus 10€—instead of a concrete state—the balance is 100€, the new balance will be

90€.

An experimental evaluation of a prototype implementation of Pot and LSD (Sec-

tion 5.3) shows that the contributions in this dissertation can improve the performance of

a fault-tolerant server up to ≈ 4×. From other point of view, the experimental results show

that a fault-tolerant server can go from being ≈ 8× slower (using sequential execution)

to only ≈ 25% slower (using concurrent execution with Pot and LSD) than a concurrent

fault-prone server. We argue that these results demonstrate the validity of our thesis: it

is possible to improve the performance of the state machine replication’s execution phase

by taking advantage of multiple processors to execute operations concurrently, while at

the same time respecting the safety properties of the state machine replication approach.

Future research directions

Pot can execute multiple transactions in fast mode if the transactions commute with each

other. One avenue of future research is to devise automatic methods to verify if two

transactions commute. This will allow a system using Pot to improve its performance

further, without requiring additional effort from application developers.

Other possible research direction is to formally specify the semantics of the LSD API

and its adapted concurrency controls. For one, this will permit a formal proof that LSD

provides serializability, by establishing that the LSD-aware concurrency control protocols

are equivalent to their original counterparts.

Formally specifying LSD can also aid in devising automatic translation methods that

are able to take in an existing application, and produce a modified version of the applica-

tion that uses the LSD API where appropriate.

Another direction is to investigate how to integrate LSD into a relational database and

the ubiquitous Structured Query Language (SQL), which is the most widely used type of

database, and interface between applications and the database, respectively.

81

Bibliography

[1] E. Alchieri, F. Dotti, and F. Pedone. “Early scheduling in parallel state machine

replication.” In: ACM Symposium on Cloud Computing (SoCC). 2018.

[2] P. A. Alsberg and J. D. Day. “A Principle for Resilient Sharing of Distributed

Resources.” In: International Conference on Software Engineering (ICSE). 1976.

[3] Amazon Web Services, Inc. Amazon Elastic Compute Cloud. https://aws.amazon.

com/ec2. Mar. 2017.

[4] Amazon.com, Inc. Amazon. https://www.amazon.com. Mar. 2017.

[5] Apache Software Foundation. Apache Thrift. https://thrift.apache.org. Nov.

2016.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia. “A view of cloud computing.” In:

Commun. ACM 53.4 (2010). doi: 10.1145/1721654.1721672.

[7] H. Baker Jr. and C. Hewitt. “The incremental garbage collection of processes.” In:

SIGPLAN Not. 12.8 (1977). doi: 10.1145/872734.806932.

[8] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh, and M.

Shapiro. “Putting Consistency Back into Eventual Consistency.” In: ACM European
Conference on Computer Systems (EuroSys). 2015. doi: 10.1145/2741948.2741972.

[9] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. “CoreDet: A com-

piler and runtime system for deterministic multithreaded execution.” In: Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2010. doi: 10.1145/1736020.1736029.

[10] E. D. Berger, T. Yang, T. Liu, and G. Novark. “Grace: Safe Multithreaded Program-

ming for C/C++.” In: ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). 2009. doi: 10.1145/

1640089.1640096.

[11] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. 1987. isbn: 0-201-10715-5.

[12] C++ Committee SG5. Technical Specification for C++ Extensions for Transactional
Memory. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

n4514.pdf. 2015.

83

https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://www.amazon.com
https://thrift.apache.org
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/872734.806932
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/1736020.1736029
https://doi.org/10.1145/1640089.1640096
https://doi.org/10.1145/1640089.1640096
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

BIBLIOGRAPHY

[13] J. Cachopo and A. Rito-Silva. “Versioned boxes as the basis for memory transac-

tions.” In: Sci. Comput. Program. 63.2 (2006). doi: 10.1016/j.scico.2006.05.

009.

[14] H. Cain, M. Michael, B. Frey, C. May, D. Williams, and H. Le. “Robust architec-

tural support for transactional memory in the POWER architecture.” In: Interna-
tional Symposium on Computer Architecture (ISCA). 2013. doi: 10.1145/2485922.

2485942.

[15] H. Cui, J. Simsa, Y. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. Gibson, and R. Bryant.

“Parrot: A practical runtime for deterministic, stable, and reliable threads.” In:

ACM Symposium on Operating Systems Principles (SOSP). 2013. doi: 10.1145/

2517349.2522735.

[16] L. Dalessandro, M. F. Spear, and M. L. Scott. “NOrec: Streamlining STM by Abolish-

ing Ownership Records.” In: ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP). 2010. doi: 10.1145/1693453.1693464.

[17] J. Dean. Building software systems at Google and lessons learned. https://static.

googleusercontent.com/media/research.google.com/en//people/jeff/

Stanford-DL-Nov-2010.pdf. Nov. 2010.

[18] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly Available

Key-value Store.” In: SOSP. 2007. doi: 10.1145/1294261.1294281.

[19] R. J. Dias, D. Distefano, J. C. Seco, and J. M. Lourenço. “Verification of snapshot iso-

lation in transactional memory Java programs.” In: European Conference on Object-
Oriented Programming (ECOOP). 2012. doi: 10.1007/978-3-642-31057-7_28.

[20] D. Dice, O. Shalev, and N. Shavit. “Transactional locking II.” In: International
Symposium on Distributed Computing (DISC). 2006. doi: 10.1007/11864219_14.

[21] N. Diegues and P. Romano. “Bumper: Sheltering transactions from conflicts.” In:

IEEE International Symposium on Reliable Distributed Systems (SRDS). 2013. doi:

10.1109/SRDS.2013.27.

[22] A. Dragojević, D. Narayanan, E. Nightingale, M. Renzelmann, A. Shamis, A. Badam,

and M. Castro. “No compromises: distributed transactions with consistency, avail-

ability, and performance.” In: ACM Symposium on Operating Systems Principles
(SOSP). 2015.

[23] eBay, Inc. eBay. https://www.ebay.com. Mar. 2017.

[24] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. “The notions of consistency

and predicate locks in a database system.” In: Commun. ACM 19.11 (1976). doi:

10.1145/360363.360369.

[25] Facebook. RocksDB. https://rocksdb.org. Nov. 2016.

84

https://doi.org/10.1016/j.scico.2006.05.009
https://doi.org/10.1016/j.scico.2006.05.009
https://doi.org/10.1145/2485922.2485942
https://doi.org/10.1145/2485922.2485942
https://doi.org/10.1145/2517349.2522735
https://doi.org/10.1145/2517349.2522735
https://doi.org/10.1145/1693453.1693464
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1007/978-3-642-31057-7_28
https://doi.org/10.1007/11864219_14
https://doi.org/10.1109/SRDS.2013.27
https://www.ebay.com
https://doi.org/10.1145/360363.360369
https://rocksdb.org

BIBLIOGRAPHY

[26] Facebook. Facebook. https://www.facebook.com. Mar. 2017.

[27] Free Software Foundation. Transactional memory in GCC. https://gcc.gnu.org/

wiki/TransactionalMemory. 2014.

[28] S. Gilbertson. Lessons from a cloud failure: It’s not Amazon, it’s you. https://www.

wired.com/2011/04/lessons-amazon-cloud-failure. Apr. 2011.

[29] Google. Google Compute Engine. https://cloud.google.com/compute. Mar.

2017.

[30] R. Guerraoui and M. Kapalka. “On the Correctness of Transactional Memory.”

In: ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). 2008. doi: 10.1145/1345206.1345233.

[31] R. Guerraoui, M. Kapalka, and J. Vitek. “STMBench7: A Benchmark for Software

Transactional Memory.” In: ACM European Conference on Computer Systems (Eu-
roSys). 2007.

[32] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang. “Rex: Replication

at the speed of multi-core.” In: ACM European Conference on Computer Systems
(EuroSys). 2014. doi: 10.1145/2592798.2592800.

[33] G. Habiger, F. J. Hauck, J. Kostler, and H. P. Reiser. “Resource-efficient state-

machine replication with multithreading and vertical scaling.” In: European De-
pendable Computing Conference (EDCC). 2018.

[34] M. Herlihy and E. Koskinen. “Transactional boosting: A methodology for highly-

concurrent transactional objects.” In: ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). 2008. doi: 10.1145/1345206.1345237.

[35] M. Herlihy and J. E. B. Moss. “Transactional memory: Architectural support for

lock-free data structures.” In: International Symposium on Computer Architecture
(ISCA). 1993. doi: 10.1145/165123.165164.

[36] P. Hudak. “Conception, evolution, and application of functional programming

languages.” In: ACM Comput. Surv. 21.3 (1989). doi: 10.1145/72551.72554.

[37] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin. “All about

Eve: Execute-verify replication for multi-core servers.” In: USENIX Conference on
Operating Systems Design and Implementation (OSDI). 2012. isbn: 978-1-931971-

96-6.

[38] S. Kim, M. Z. Lee, A. M. Dunn, O. S. Hofmann, X. Wang, E. Witchel, and D. E. Porter.

“Improving server applications with system transactions.” In: ACM European Con-
ference on Computer Systems (EuroSys). 2012. doi: 10.1145/2168836.2168839.

[39] R. Kotla and M. Dahlin. “High throughput byzantine fault tolerance.” In: Interna-
tional Conference on Dependable Systems and Networks (DSN). 2004. doi: 10.1109/

DSN.2004.1311928.

85

https://www.facebook.com
https://gcc.gnu.org/wiki/TransactionalMemory
https://gcc.gnu.org/wiki/TransactionalMemory
https://www.wired.com/2011/04/lessons-amazon-cloud-failure
https://www.wired.com/2011/04/lessons-amazon-cloud-failure
https://cloud.google.com/compute
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/2592798.2592800
https://doi.org/10.1145/1345206.1345237
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/2168836.2168839
https://doi.org/10.1109/DSN.2004.1311928
https://doi.org/10.1109/DSN.2004.1311928

BIBLIOGRAPHY

[40] H. T. Kung and J. T. Robinson. “On Optimistic Methods for Concurrency Control.”

In: ACM Trans. Database Syst. 6.2 (1981). doi: 10.1145/319566.319567.

[41] L. Lamport. “Time, clocks, and the ordering of events in a distributed system.” In:

Commun. ACM 21.7 (1978). doi: 10.1145/359545.359563.

[42] L. Lamport. “The part-time parliament.” In: ACM Trans. Comput. Syst. 16.2 (1998).

doi: 10.1145/279227.279229.

[43] L. Lamport, R. Shostak, and M. Pease. “The byzantine generals problem.” In: ACM
Trans. Program. Lang. Syst. 4.3 (1982). doi: 10.1145/357172.357176.

[44] J. Liu, T. Magrino, O. Arden, M. D. George, and A. C. Myers. “Warranties for

faster strong consistency.” In: USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 2014. isbn: 978-1-931971-09-6.

[45] T. Liu, C. Curtsinger, and E. Berger. “DThreads: Efficient deterministic multi-

threading.” In: ACM Symposium on Operating Systems Principles (SOSP). 2011. doi:

10.1145/2043556.2043587.

[46] S. Lu, S. Park, E. Seo, and Y. Zhou. “Learning from Mistakes: A Comprehensive

Study on Real World Concurrency Bug Characteristics.” In: International Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). 2008. doi: 10.1145/1346281.1346323.

[47] P. J. Marandi and F. Pedone. “Optimistic parallel state-machine replication.” In:

IEEE International Symposium on Reliable Distributed Systems (SRDS). 2014. doi:

10.1109/SRDS.2014.25.

[48] P. J. Marandi, M. Primi, and F. Pedone. “High performance state-machine replica-

tion.” In: International Conference on Dependable Systems and Networks (DSN). 2011.

doi: 10.1109/DSN.2011.5958258.

[49] P. J. Marandi, C. E. Bezerra, and F. Pedone. “Rethinking state-machine replication

for parallelism.” In: IEEE International Conference on Distributed Computing Systems
(ICDCS). 2014. doi: 10.1109/ICDCS.2014.45.

[50] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. “STAMP: Stanford trans-

actional applications for multi-processing.” In: IEEE International Symposium on
Workload Characterization (IISWC). 2008.

[51] N. Narula, C. Cutler, E. Kohler, and R. Morris. “Phase reconciliation for contended

in-memory transactions.” In: USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2014. isbn: 978-1-931971-16-4.

[52] Netflix, Inc. Netflix. https://www.netflix.com. Mar. 2017.

[53] M. Olszewski, J. Ansel, and S. Amarasinghe. “Kendo: Efficient deterministic mul-

tithreading in software.” In: International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 2009. doi: 10.1145/

1508244.1508256.

86

https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1109/SRDS.2014.25
https://doi.org/10.1109/DSN.2011.5958258
https://doi.org/10.1109/ICDCS.2014.45
https://www.netflix.com
https://doi.org/10.1145/1508244.1508256
https://doi.org/10.1145/1508244.1508256

BIBLIOGRAPHY

[54] P. E. O’Neil. “The Escrow Transactional Method.” In: TODS 11.4 (1986). doi:

10.1145/7239.7265.

[55] C. Papadimitriou. “The serializability of concurrent database updates.” In: JACM
26.4 (1979). doi: 10.1145/322154.322158.

[56] K. Ravichandran, A. Gavrilovska, and S. Pande. “DeSTM: Harnessing Determinism

in STMs for Application Development.” In: International Conference on Parallel
Architectures and Compilation Techniques (PACT). 2014. doi: 10.1145/2628071.

2628094.

[57] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster, and J. Gehrke. “The

Homeostasis Protocol: Avoiding Transaction Coordination Through Program Anal-

ysis.” In: ACM SIGMOD International Conference on Management of Data (SIGMOD).
2015. doi: 10.1145/2723372.2723720.

[58] F. B. Schneider. “Implementing fault-tolerant services using the state machine

approach: A tutorial.” In: ACM Comput. Surv. 22.4 (1990). doi: 10.1145/98163.

98167.

[59] ScyllaDB. Seastar. http://seastar.io. Sept. 2018.

[60] S. Shankland. Google spotlights data center inner workings. https://www.cnet.com/
news/google-spotlights-data-center-inner-workings. May 2008.

[61] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Conflict-free replicated

data types.” In: International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS). 2011. doi: 10.1007/978-3-642-24550-3_29.

[62] N. Shavit and D. Touitou. “Software transactional memory.” In: Distributed Com-
puting 10.2 (1997). doi: 10.1007/s004460050028.

[63] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. J. Abadi. “Calvin:

Fast distributed transactions for partitioned database systems.” In: ACM SIGMOD
International Conference on Management of Data (SIGMOD). 2012. doi: 10.1145/

2213836.2213838.

[64] TPC. TPC-C. http://tpc.org/tpcc. Apr. 2017.

[65] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. “Speedy Transactions in Mul-

ticore In-memory Databases.” In: SOSP. 2013. doi: 10.1145/2517349.2522713.

[66] Twitter. Twitter. https://www.twitter.com. Mar. 2017.

[67] T. M. Vale, J. A. Silva, R. J. Dias, and J. M. Lourenço. “Execução concorrente e

determinista de transacções.” In: Simpósio de Informática (INForum). 2015.

[68] T. M. Vale, J. A. Silva, R. J. Dias, and J. M. Lourenço. “Pot: Deterministic transac-

tional execution.” In: ACM Trans. Archit. Code Optim. 13.4 (2016). doi: 10.1145/

3017993.

87

https://doi.org/10.1145/7239.7265
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/2628071.2628094
https://doi.org/10.1145/2628071.2628094
https://doi.org/10.1145/2723372.2723720
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
http://seastar.io
https://www.cnet.com/news/google-spotlights-data-center-inner-workings
https://www.cnet.com/news/google-spotlights-data-center-inner-workings
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/s004460050028
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838
http://tpc.org/tpcc
https://doi.org/10.1145/2517349.2522713
https://www.twitter.com
https://doi.org/10.1145/3017993
https://doi.org/10.1145/3017993

BIBLIOGRAPHY

[69] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi, and P. Maha-

jan. “Salt: Combining ACID and BASE in a distributed database.” In: USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 2014. isbn:

978-1-931971-16-4.

[70] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang. “High-performance

ACID via modular concurrency control.” In: ACM Symposium on Operating Systems
Principles (SOSP). 2015. doi: 10.1145/2815400.2815430.

[71] C. Yan and A. Cheung. “Leveraging lock contention to improve OLTP application

performance.” In: PVLDB 9.5 (2016). doi: 10.14778/2876473.2876479.

[72] R. Yoo, C. Hughes, K. Lai, and R. Rajwar. “Performance evaluation of Intel transac-

tional synchronization extensions for high-performance computing.” In: Interna-
tional Conference for High Performance Computing Networking, Storage, and Analysis
(SC). 2013. doi: 10.1145/2503210.2503232.

88

https://doi.org/10.1145/2815400.2815430
https://doi.org/10.14778/2876473.2876479
https://doi.org/10.1145/2503210.2503232

	Introduction
	Context
	Problem statement
	Thesis statement and contributions
	Outline

	Preliminaries
	State machine replication
	Transactions

	Pot: Preordered transactions
	Introduction
	Design
	Ordering phase: Pot sequencer
	Execution phase: pcc

	Implementation
	stm
	htm

	Experimental evaluation
	stm
	htm

	LSD: Lazy State Determination
	Introduction
	Overview
	The pitfalls of the traditional API
	Introducing LSD

	LSD Design
	Design overview
	Interface
	Concurrency control
	Distributed transactions

	Evaluation
	Realistic application: TPC-C
	Microbenchmarks

	Concurrent state machine replication using Pot+LSD
	Background
	Pot
	LSD

	Combining Pot and LSD
	Evaluation
	Setup
	Low contention
	High contention

	Related work
	Deterministic multithreading
	State machine replication
	Using application-specific information
	Without using application-specific information

	Transactions
	Concurrency control
	Increased concurrency

	Conclusion
	Bibliography

