Synthesis and Characterization of Magnetic Nanoparticles and their internalization on Tumor Cell Lines

Citation:
Chaparro, Catarina IP, Liliana R. Loureiro, Manuel Almeida Valente, Paula A. Videira, João Paulo Borges, and Paula I. P. Soares. "Synthesis and Characterization of Magnetic Nanoparticles and their internalization on Tumor Cell Lines." 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) (2019): 1-4.

Abstract:

Truncated sialylated O-glycans, such as cell-surface carbohydrate antigen sialyl-Tn (STn) are overexpressed by several cancer types, but not by the respective normal tissues. STn expression is associated with oncogenesis and metastatic ability of cancer cells, with reduced overall survival and lack of response to chemotherapy. Advances in nanomedicine have resulted in rapid development of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with considerable potential in cancer treatment. Therefore, in this study SPIONs coated with oleic acid (OA) or dimercaptosuccinic acid (DMSA) were developed and characterized for internalization in two breast cancer cell lines: cell line expressing the STn antigen and the corresponding control. SPIONs with an average diameter of 8 nm showed superparamagnetic behavior and high potential to be used as magnetic hyperthermia agents. OA and DMSA coating provided high stability of SPIONs in physiological conditions while not changing their main properties. NPs internalization studies showed a higher accumulation of DMSA coated NPs in the breast cancer MDA-MB-231 WT cell line. In MDA-MB-231 cell line expressing STn both coated NPs showed a similar accumulation. Therefore, STn antigen can act as a receptor capable of detecting and covalently bind to the molecules present on NPs surface and induce their cellular uptake by endocytosis.

Related External Link