Cordeiro, M, Otrelo-Cardoso {ARC}, Svergun {DI }, Konarev {PV }, Lima {JC}, Santos-Silva T, Baptista {PV}.
2018.
Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor, may. ACS Chemical Biology. 13:1235–1242., Number 5: ACS - American Chemical Society
AbstractSelective base pairing is the foundation of DNA recognition. Here, we elucidate the molecular and structural details of a FRET-based two-component molecular beacon relying on steady-state fluorescence spectroscopy, small-angle X-ray scattering (SAXS), microscale thermophoresis (MST), and differential electrophoretic mobility. This molecular beacon was designed to detect the most common fusion sequences causing chronic myeloid leukemia, e14a2 and e13a2. The emission spectra indicate that the self-assembly of the different components of the biosensor occurs sequentially, triggered by the fully complementary target. We further assessed the structural alterations leading to the specific fluorescence FRET signature by SAXS, MST, and the differential electrophoretic mobility, where the size range observed is consistent with hybridization and formation of a 1:1:1 complex for the probe in the presence of the complementary target and revelator. These results highlight the importance of different techniques to explore conformational DNA changes in solution and its potential to design and characterize molecular biosensors for genetic disease diagnosis.
Maron, A, Czerwinska K, Machura B, Raposo L, Roma-Rodrigues C, Fernandes AR, Malecki JG, Szlapa-Kula A, Kula S, Krompiec S.
2018.
Spectroscopy, electrochemistry and antiproliferative properties of Au(iii), Pt(ii) and Cu(ii) complexes bearing modified 2,2':6',2''-terpyridine ligands, 2018. Dalton Trans. 47(18):6444-6463.
AbstractStructural, spectroscopic and electrochemical properties of six complexes [AuCl(L1)](PF6)2.CH3CN (1), [AuCl(L2)](PF6)2 (2), [PtCl(L1)](BPh4).CH3CN (3), [PtCl(L2)](SO3CF3) (4), [CuCl2(L1)] (5) and [CuCl2(L2)].CH3CN (6) with modified 2,2':6',2''-terpyridine ligands, 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (L1) and 4'-(4-methoxynaphthalen-1-yl)-2,2':6',2''-terpyridine (L2) were thoroughly investigated and a significant role of the substituent (4-methoxyphenyl or 4-methoxynaphthalen-1-yl) and the metal center was demonstrated. The naphthyl-based substituent was found to increase the emission quantum yield of the luminescent Au(iii) and Pt(ii) complexes. Furthermore, the antiproliferative potential of the reported complexes was examined towards human colorectal (HCT116) and ovarian (A2780) carcinoma cell lines as well as towards normal human fibroblasts. The Au(iii) complex 2 and Cu(ii) complex 5 were found to have a higher antiproliferative effect on HCT116 colorectal and A2780 ovarian carcinoma cells when compared with the Pt(ii) complex with the same ligand (4). The order of cytotoxicity in both cell lines is 2 > 6 > 1 > 3 > 4. Complex 2 seems to be more cytotoxic towards HCT116 and A2780 cancer cell lines with IC50 values 300x and 130x higher in normal human fibroblasts compared to the respective cancer cells. The viability loss induced by the complexes agrees with Hoechst 33258 staining and the typical morphological apoptotic characteristics like chromatin condensation and nuclear fragmentation and flow cytometry assay. The induction of apoptosis correlates with the induction of reactive oxygen species (ROS). Fluorescence microscopy analysis indicates that after 3 h of incubation, complexes 1-4 are localized inside HCT116 cells and the high levels of internalization correlate with their cytotoxicity.
Ropio, I, Baptista AC, Nobre J, Correia J, Belo F, Taborda S, Faustino MBM, Borges JB, Kovalenko A, Ferreira I.
2018.
Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Organic Electronics. 62:530-535.
AbstractA simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisation optimised for each polymer individually with respect to oxidant-to-monomer ratios and polymerisation times and temperature. Paper with conductivity values of 44 mS/cm was obtained by exposing the samples to pyrrole vapour for a period of 30 min at room temperature; however, polymerisation at temperatures of 40 °C lead to higher conductivity values to up 141 mS/cm. Consequently, functionalised PPy and PEDOT papers were applied as cathodes in batteries with Al foil anodes and commercial paper soaked in an electrolyte solution of NaCl.
Giannakidis, G, Gargiulo M, De Miglio R, Chiodi A, Seixas J, Simoes SG, Dias L, Gouveia J.
2018.
Challenges faced when addressing the role of cities towards a below 2-degree world. Limiting Global Warming to Well Below 2°C: Energy System Modelling and Policy Development. (
Giannakidis G., K. Karlsson, M. Labriet, B. Ó Gallachóir, Eds.).: Lecture Notes in Energy 64. Springer International publishing. Doi: 10.1007/978-3-319-74424-7
Reckien, D, Heidrich O, Church J, Pietrapertos F, De Gregorio-Hurtado S, D'Alonzo V, Foley A, Simoes SG, Lorencová EK, Orruk H, Orrum K, Wejs A, Flacke J, Olazabal M, Geneletti D, Feliu E, Vasilier S, Nador C, Krook-Riekkola A, Matosović M, A. Fokaides P, I. Ioannou B, Flamos A, Spyridaki N.
2018.
How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28 Journal of Cleaner Production. doi: 10.1016/j.jclepro.2018.03.220. 191:207-219.
Seixas, J, Simoes SG, Fortes P, Gouveia J.
2018.
The pivotal role of electricity in the deep decarbonization of energy system: cost-effective options for Portugal. Limiting Global Warming to Well Below 2°C: Energy System Modelling and Policy Development. (
Giannakidis G., K. Karlsson, M. Labriet, B. Ó Gallachóir, Eds.).: Springer, Lecture Notes in Energy 64. Springer International publishing, Doi: 10.1007/978-3-319-74424-7
Dantas, JM, Ferreira MR, Catarino T, Kokhan O, Pokkuluri RP, Salgueiro CA.
2018.
Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1859:619-630., Number 8
AbstractThe bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.
Kumar, K, Correia M, Pires VR, Dhillon A, Sharma K, Rajulapati V, Fontes CMGA, Carvalho AL, Goyal A.
2018.
Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. International Journal of Biological Macromolecules. :-.
AbstractAbstract The family 81 glycoside hydrolase (GH81) from Clostridium thermocellum is a β-1,3-glucanase belonging to cellulosomal complex. The gene encoding \{GH81\} from Clostridium thermocellum (CtLam81A) was cloned and expressed displaying a molecular mass of 82 kDa. CtLam81A showed maximum activity against laminarin (100 U/mg), followed by curdlan (65 U/mg), at pH 7.0 and 75 °C. CtLam81A displayed Km, 2.1 ± 0.12 mg/ml and Vmax, 109 ± 1.8 U/mg, against laminarin under optimized conditions. CtLam81A activity was significantly enhanced by Ca2+ or Mg2+ ions. Melting curve analysis of CtLam81A showed an increase in melting temperature from 91 °C to 96 °C by Ca2+ or Mg2+ ions and decreased to 82 °C by EDTA, indicating that Ca2+ and Mg2+ ions may be involved in catalysis and in maintaining structural integrity. \{TLC\} and MALDI-TOF analysis of β-1,3-glucan hydrolysed products released initially, showed β-1,3-glucan-oligosaccharides degree of polymerization (DP) from \{DP2\} to DP7, confirming an endo-mode of action. The catalytically inactive mutant CtLam81A-E515A generated by site-directed mutagenesis was co-crystallized and tetragonal crystals diffracting up to 1.4 Å resolution were obtained. CtLam81A-E515A contained 15 α-helices and 38 β-strands forming a four-domain structure viz. a β-sandwich domain I at N-terminal, an α/β-domain II, an (α/α)6 barrel domain III, and a small 5-stranded β-sandwich domain IV.
Larsen, SR, Hansteen M, Pacakova B, Theodor K, Arnold T, Rennie AR, Helgesen G, Knudsen KD, Bordallo HN, Fossum JO, Cavalcanti LP.
2018.
Sample Cell for Studying Liquid Interfaces with an {\emph{in Situ}} Electric Field Using {{X}}-Ray Reflectivity and Application to Clay Particles at Oil–{}Oil Interfaces. Journal of Synchrotron Radiation. 25:915-917., Number 3
Abstractn/a