Export 291 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Kyprianou, I, Serghides D, Varo A, Gouveia JP, Kopeva D, Murauskaite L.  2019.  Energy Poverty Policies and Measures in 5 EU Countries: A Comparative Study.. Energy and Buildings. 196:46-60.
Khili, F, Borges JB, Almeida PL, Boukherroub R, Omrani AD.  2019.  Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste and Biomass Valorization. 10:1913-1927. AbstractWebsite

The aim of the present study is to investigate the effect of the hydrolysis process on the properties of nanocrystalline cellulose (NCC) isolated from different precursors and the subsequent use of the extracted NCC for the reduction of graphene oxide (GO). The raw materials (almond and peanut shells) chosen for the isolation of cellulose were selected on the basis of their abundance and their poorly investigation in the production of NCC. Microcrystalline cellulose (MCC) was firstly extracted by alkali and bleaching treatments, then hydrolyzed under different processes to produce NCC polymorphs with structure I (NCC-I) and NCC structure II (NCC-II). The Fourier transform infrared spectroscopy, the X-ray diffraction (XRD) and the 13C NMR studies of the alkali and bleached products confirmed the formation of cellulose type I with high purity and good crystallinity, while scanning electron microscopy (SEM) showed micrometric fibers with lengths reaching 80 µm. Sulfuric acid treatment of these microfibers results in NCC type I or II, depending on the hydrolysis process. SEM of the NCC samples exhibited nanorods with diameter and aspect ratio in the range of 20–40 and 20–25 nm, respectively. Thermogravimetric analysis (TGA) of the MCC and NCC products indicated stable materials with a degradation temperature reaching 240 and 200 °C for MCC and NCC, respectively. The other part of our work concerns the use of the obtained cellulose nanocrystals (type II) for the preparation of reduced graphene oxide composite (NCC/RGO), to demonstrate the reducing properties of the isolated NCCII.

Khili, F, Borges J, Almeida PL, Boukherroub R, Omrani AD.  2019.  Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste and Biomass Valorization. 10:1913–1927. AbstractWebsite

The aim of the present study is to investigate the effect of the hydrolysis process on the properties of nanocrystalline cellulose (NCC) isolated from different precursors and the subsequent use of the extracted NCC for the reduction of graphene oxide (GO). The raw materials (almond and peanut shells) chosen for the isolation of cellulose were selected on the basis of their abundance and their poorly investigation in the production of NCC. Microcrystalline cellulose (MCC) was firstly extracted by alkali and bleaching treatments, then hydrolyzed under different processes to produce NCC polymorphs with structure I (NCC-I) and NCC structure II (NCC-II). The Fourier transform infrared spectroscopy, the X-ray diffraction (XRD) and the 13C NMR studies of the alkali and bleached products confirmed the formation of cellulose type I with high purity and good crystallinity, while scanning electron microscopy (SEM) showed micrometric fibers with lengths reaching 80 µm. Sulfuric acid treatment of these microfibers results in NCC type I or II, depending on the hydrolysis process. SEM of the NCC samples exhibited nanorods with diameter and aspect ratio in the range of 20–40 and 20–25 nm, respectively. Thermogravimetric analysis (TGA) of the MCC and NCC products indicated stable materials with a degradation temperature reaching 240 and 200 °C for MCC and NCC, respectively. The other part of our work concerns the use of the obtained cellulose nanocrystals (type II) for the preparation of reduced graphene oxide composite (NCC/RGO), to demonstrate the reducing properties of the isolated NCCII.

Kiazadeh, A, Deueurmeier J.  2019.  Flexible and transparent ReRAM devices for system on panel (SOP) application. Advances in Non-Volatile Memory and Storage Technology (Second Edition). (https://doi.org/10.1016/B978-0-08-102584-0.00014-0, Ed.).:519-538., Cambridge: Woodhead-Elsevier
Coroa, J, Morais Faustino BM, Marques AC, Bianchi C, Koskinen T, Juntunen T, Tittonen I, Ferreira I.  2019.  Highly transparent copper iodide thin film thermoelectric generator on a flexible substrate. RSC Advances. 9:35384.
Gavinho, SR, Prezas PR, Ramos DJ, Sá-Nogueira I, Borges JB, Lança CM, Silva JC, Henriques C, Pires E, Kumar JS, Graça MP.  2019.  Nontoxic glasses: Preparation, structural, electrical and biological properties. Applied Ceramics Technology. 16(5):1885-1894. AbstractWebsite

Bacterial infections affect about 1 in 5 patients who receive a dental implant within 5 years of surgery. To avoid the implant rejection it is necessary for the development of innovative biomaterials, with addition or substitution of the ions, for implant coatings that promote a strong bond with the new host bone and antibacterial action. The objective of this work was to synthesize a bioactive glass with different silver concentrations to evaluate their antibacterial performance. The glasses were synthesized with up to 2% silver content by melt-quenching. Structural, morphological, biological, and electrical properties of all samples were studied. The biological behavior was evaluated through cytotoxicity tests and antibacterial activity. The structural analysis shows that the introduction of silver do not promote significant changes, not altering the advantageous properties of the bioglass of the bioglass. It was verified that the glasses with a silver content from 0.5% to 2%, completely prevented the growth of both Staphylococcus aureus and Escherichia coli while being nontoxic toward mammalian cells. Therefore, these bioglasses are promising materials to be used in the production of dental implants with antimicrobial activity.

Kourmentza, C, Araujo D, Sevrinc C, Roma-Rodriques C, Ferreira LJ, Freitas F, Dionísio M, Baptista PV, Fernandes AR, Grandfils C, Reis MAM.  2019.  Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product. Bioresource Technology . 281:31-40.Website
Pardo-García, N, Simoes SG, Dias L, Sandgren A, Suna D, Krook-Riekkola A.  2019.  Sustainable and Resource Efficient Cities Platform – SureCity holistic simulation and optimization for smart cities. Journal of Cleaner Production. 215:701-711,doi:https://doi.org/10.1016/j.jclepro.2019.01.070.
CasaBranca, N, Deuermeier J, Martins J, Carlos E, Pereira M, Martins R, Fortunato E, Kiazadeh A.  2019.  2D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodes. Advanced Electronic Materials. AbstractWebsite
n/a
Ambrosi, E, Bartlett P, Berg AI, Brivio S, Burr G, Deswal S, Deuermeier J, Haga M-A, Kiazadeh A, Kissling G, Kozicki M, Foroutan-Nejad C, Gale E, Gonzalez-Velo Y, Goossens A, Goux L, Hasegawa T, Hilgenkamp H, Huang R, Ibrahim S, Ielmini D, Kenyon AJ, Kolosov V, Li Y, Majumdar S, Milano G, Prodromakis T, Raeishosseini N, Rana V, Ricciardi C, Santamaria M, Shluger A, Valov I, Waser R, Stanley Williams R, Wouters D, Yang Y, Zaffora A.  2019.  Electrochemical metallization ReRAMs (ECM) - Experiments and modelling: General discussion. Faraday Discussions. 213:115-120. AbstractWebsite
n/a
Deuermeier, J, Kiazadeh A, Klein A, Martins R, Fortunato E.  2019.  Multi-level cell properties of a bilayer Cu2O/Al2O3 resistive switching device. Nanomaterials. 9, Number 2 AbstractWebsite
n/a
Berg, AI, Brivio S, Brown S, Burr G, Deswal S, Deuermeier J, Gale E, Hwang H, Ielmini D, Indiveri G, Kenyon AJ, Kiazadeh A, Köymen I, Kozicki M, Li Y, Mannion D, Prodromakis T, Ricciardi C, Siegel S, Speckbacher M, Valov I, Wang W, Williams RS, Wouters D, Yang Y.  2019.  Synaptic and neuromorphic functions: General discussion. Faraday Discussions. 213:553-578. AbstractWebsite
n/a
Aono, M, Baeumer C, Bartlett P, Brivio S, Burr G, Burriel M, Carlos E, Deswal S, Deuermeier J, Dittmann R, Du H, Gale E, Hambsch S, Hilgenkamp H, Ielmini D, Kenyon AJ, Kiazadeh A, Kindsmüller A, Kissling G, Köymen I, Menzel S, Pla Asesio D, Prodromakis T, Santamaria M, Shluger A, Thompson D, Valov I, Wang W, Waser R, Williams RS, Wrana D, Wouters D, Yang Y, Zaffora A.  2019.  Valence change ReRAMs (VCM) - Experiments and modelling: General discussion. Faraday Discussions. 213:259-286. AbstractWebsite
n/a
2018
Cordeiro, M, Otrelo-Cardoso {ARC}, Svergun {DI }, Konarev {PV }, Lima {JC}, Santos-Silva T, Baptista {PV}.  2018.  Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor, may. ACS Chemical Biology. 13:1235–1242., Number 5: ACS - American Chemical Society Abstract

Selective base pairing is the foundation of DNA recognition. Here, we elucidate the molecular and structural details of a FRET-based two-component molecular beacon relying on steady-state fluorescence spectroscopy, small-angle X-ray scattering (SAXS), microscale thermophoresis (MST), and differential electrophoretic mobility. This molecular beacon was designed to detect the most common fusion sequences causing chronic myeloid leukemia, e14a2 and e13a2. The emission spectra indicate that the self-assembly of the different components of the biosensor occurs sequentially, triggered by the fully complementary target. We further assessed the structural alterations leading to the specific fluorescence FRET signature by SAXS, MST, and the differential electrophoretic mobility, where the size range observed is consistent with hybridization and formation of a 1:1:1 complex for the probe in the presence of the complementary target and revelator. These results highlight the importance of different techniques to explore conformational DNA changes in solution and its potential to design and characterize molecular biosensors for genetic disease diagnosis.

Maron, A, Czerwinska K, Machura B, Raposo L, Roma-Rodrigues C, Fernandes AR, Malecki JG, Szlapa-Kula A, Kula S, Krompiec S.  2018.  Spectroscopy, electrochemistry and antiproliferative properties of Au(iii), Pt(ii) and Cu(ii) complexes bearing modified 2,2':6',2''-terpyridine ligands, 2018. Dalton Trans. 47(18):6444-6463. AbstractWebsite

Structural, spectroscopic and electrochemical properties of six complexes [AuCl(L1)](PF6)2.CH3CN (1), [AuCl(L2)](PF6)2 (2), [PtCl(L1)](BPh4).CH3CN (3), [PtCl(L2)](SO3CF3) (4), [CuCl2(L1)] (5) and [CuCl2(L2)].CH3CN (6) with modified 2,2':6',2''-terpyridine ligands, 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (L1) and 4'-(4-methoxynaphthalen-1-yl)-2,2':6',2''-terpyridine (L2) were thoroughly investigated and a significant role of the substituent (4-methoxyphenyl or 4-methoxynaphthalen-1-yl) and the metal center was demonstrated. The naphthyl-based substituent was found to increase the emission quantum yield of the luminescent Au(iii) and Pt(ii) complexes. Furthermore, the antiproliferative potential of the reported complexes was examined towards human colorectal (HCT116) and ovarian (A2780) carcinoma cell lines as well as towards normal human fibroblasts. The Au(iii) complex 2 and Cu(ii) complex 5 were found to have a higher antiproliferative effect on HCT116 colorectal and A2780 ovarian carcinoma cells when compared with the Pt(ii) complex with the same ligand (4). The order of cytotoxicity in both cell lines is 2 > 6 > 1 > 3 > 4. Complex 2 seems to be more cytotoxic towards HCT116 and A2780 cancer cell lines with IC50 values 300x and 130x higher in normal human fibroblasts compared to the respective cancer cells. The viability loss induced by the complexes agrees with Hoechst 33258 staining and the typical morphological apoptotic characteristics like chromatin condensation and nuclear fragmentation and flow cytometry assay. The induction of apoptosis correlates with the induction of reactive oxygen species (ROS). Fluorescence microscopy analysis indicates that after 3 h of incubation, complexes 1-4 are localized inside HCT116 cells and the high levels of internalization correlate with their cytotoxicity.

Krings, B-J, Weinberger N.  2018.  Assistant without Master? Some Conceptual Implications of Assistive Robotics in Health Care Technologies. 18(1) AbstractWebsite

The subject of “technical assistants” in inpatient care is currently being widely discussed in scientific and public circles. In many cases, though, it has become apparent that the umbrella term “assistive technologies”, also in the context of robotics, is very contrived. Against this background, the authors of this article reflect on the meaning of “assistance” in socio-technical systems, and critically review its relevance. To understand and demonstrate “assistive” functions, it is essential to establish a frame of reference. The re-evaluation of an empirical study of people with dementia in inpatient care has revealed the functional character of technical assistance systems. The results, however, show that the theoretical debate on the social and organisational function of “assistance” in these technical fields is still lacking. Therefore, the reflections in this paper may also provide some starting points for this debate.

Ropio, I, Baptista AC, Nobre JP, Correia J, Belo F, Taborda S, Faustino MBM, Borges JP, Kovalenko A, Ferreira I.  2018.  Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Org Electron. AbstractWebsite

A simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisation optimised for each polymer individually with respect to oxidant-to-monomer ratios and polymerisation times and temperature. Paper with conductivity values of 44 mS/cm was obtained by exposing the samples to pyrrole vapour for a period of 30 min at room temperature; however, polymerisation at temperatures of 40 °C lead to higher conductivity values to up 141 mS/cm. Consequently, functionalised PPy and PEDOT papers were applied as cathodes in batteries with Al foil anodes and commercial paper soaked in an electrolyte solution of NaCl.

Ropio, I, Baptista AC, Nobre J, Correia J, Belo F, Taborda S, Faustino MBM, Borges JB, Kovalenko A, Ferreira I.  2018.  Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Organic Electronics. 62:530-535. AbstractWebsite

A simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisation optimised for each polymer individually with respect to oxidant-to-monomer ratios and polymerisation times and temperature. Paper with conductivity values of 44 mS/cm was obtained by exposing the samples to pyrrole vapour for a period of 30 min at room temperature; however, polymerisation at temperatures of 40 °C lead to higher conductivity values to up 141 mS/cm. Consequently, functionalised PPy and PEDOT papers were applied as cathodes in batteries with Al foil anodes and commercial paper soaked in an electrolyte solution of NaCl.

Giannakidis, G, Gargiulo M, De Miglio R, Chiodi A, Seixas J, Simoes SG, Dias L, Gouveia J.  2018.  Challenges faced when addressing the role of cities towards a below 2-degree world. Limiting Global Warming to Well Below 2°C: Energy System Modelling and Policy Development. (Giannakidis G., K. Karlsson, M. Labriet, B. Ó Gallachóir, Eds.).: Lecture Notes in Energy 64. Springer International publishing. Doi: 10.1007/978-3-319-74424-7
Reckien, D, Heidrich O, Church J, Pietrapertos F, De Gregorio-Hurtado S, D'Alonzo V, Foley A, Simoes SG, Lorencová EK, Orruk H, Orrum K, Wejs A, Flacke J, Olazabal M, Geneletti D, Feliu E, Vasilier S, Nador C, Krook-Riekkola A, Matosović M, A. Fokaides P, I. Ioannou B, Flamos A, Spyridaki N.  2018.  How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28 Journal of Cleaner Production. doi: 10.1016/j.jclepro.2018.03.220. 191:207-219.
Seixas, J, Simoes SG, Fortes P, Gouveia J.  2018.  The pivotal role of electricity in the deep decarbonization of energy system: cost-effective options for Portugal. Limiting Global Warming to Well Below 2°C: Energy System Modelling and Policy Development. (Giannakidis G., K. Karlsson, M. Labriet, B. Ó Gallachóir, Eds.).: Springer, Lecture Notes in Energy 64. Springer International publishing, Doi: 10.1007/978-3-319-74424-7
Dantas, JM, Ferreira MR, Catarino T, Kokhan O, Pokkuluri RP, Salgueiro CA.  2018.  Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1859:619-630., Number 8 AbstractWebsite

The bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.

Kumar, K, Correia M, Pires VR, Dhillon A, Sharma K, Rajulapati V, Fontes CMGA, Carvalho AL, Goyal A.  2018.  Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. International Journal of Biological Macromolecules. :-. AbstractWebsite

Abstract The family 81 glycoside hydrolase (GH81) from Clostridium thermocellum is a β-1,3-glucanase belonging to cellulosomal complex. The gene encoding \{GH81\} from Clostridium thermocellum (CtLam81A) was cloned and expressed displaying a molecular mass of  82 kDa. CtLam81A showed maximum activity against laminarin (100 U/mg), followed by curdlan (65 U/mg), at pH 7.0 and 75 °C. CtLam81A displayed Km, 2.1 ± 0.12 mg/ml and Vmax, 109 ± 1.8 U/mg, against laminarin under optimized conditions. CtLam81A activity was significantly enhanced by Ca2+ or Mg2+ ions. Melting curve analysis of CtLam81A showed an increase in melting temperature from 91 °C to 96 °C by Ca2+ or Mg2+ ions and decreased to 82 °C by EDTA, indicating that Ca2+ and Mg2+ ions may be involved in catalysis and in maintaining structural integrity. \{TLC\} and MALDI-TOF analysis of β-1,3-glucan hydrolysed products released initially, showed β-1,3-glucan-oligosaccharides degree of polymerization (DP) from \{DP2\} to DP7, confirming an endo-mode of action. The catalytically inactive mutant CtLam81A-E515A generated by site-directed mutagenesis was co-crystallized and tetragonal crystals diffracting up to 1.4 Å resolution were obtained. CtLam81A-E515A contained 15 α-helices and 38 β-strands forming a four-domain structure viz. a β-sandwich domain I at N-terminal, an α/β-domain II, an (α/α)6 barrel domain III, and a small 5-stranded β-sandwich domain IV.

Larsen, SR, Hansteen M, Pacakova B, Theodor K, Arnold T, Rennie AR, Helgesen G, Knudsen KD, Bordallo HN, Fossum JO, Cavalcanti LP.  2018.  Sample Cell for Studying Liquid Interfaces with an {\emph{in Situ}} Electric Field Using {{X}}-Ray Reflectivity and Application to Clay Particles at Oil–{}Oil Interfaces. Journal of Synchrotron Radiation. 25:915-917., Number 3 Abstract
n/a
2017
Kryshtafovych, A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring G-W, Koning RI, {Lo Leggio} L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T.  2017.  Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016), oct. Proteins: Structure, Function, and Bioinformatics. AbstractWebsite

The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment. This article is protected by copyright. All rights reserved.

loading