Publications

Sort by: Type [ Year  (Desc)]
2025
Triazole-Derived Ruthenium(II) Complexes as Novel Candidates for Cancer Therapy, Royo, Beatriz, Lenis-Rojas {Oscar A. }, Roma Catarina, Carvalho Beatriz, Andrade Vasco, Friães Sofia, Cabezas-Sain Pablo, Fernández {Jhonathan Angel Araujo}, Vila {Sabela Fernandez}, Arana {Alvaro J. }, Sanchez Laura, Baptista {Pedro V. }, Gomes {Clara S. B. }, and Fernandes {Alexandra R. } , ChemPlusChem, p.e202400775, (2025) Abstract

The first examples of Ru(II) h6-arene (benzene and p-cymene) complexes containing a bidentate triazolylidene-triazolide ligand have been prepared and fully characterized. Their antiproliferative effect has been investigated against tumour cells A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116dox (colorectal carcinoma resistant to doxorubicin), and in human dermal fibroblasts. The Ru complex bearing the p-cymene arene group exhibited a stronger antiproliferative effect across all tested cell lines, while the benzene-containing complex displayed higher selectivity toward tumor cells. Both complexes induced apoptosis, likely through ROS production (in the benzene complex), and inhibited tumorigenic processes, including cell migration and angiogenesis. In zebrafish models, they showed strong selectivity for cancer cells with minimal toxicity to healthy cells, effectively reducing the proliferation of HCT116 colorectal cancer cells. This study provides the first in vivo evidence of the anticancer potential of Ru triazolylidenes in zebrafish models.

2024
Tackling Imatinib Resistance via Au-nanoconjugates using A Cml Resistant Cell Line, Abdulmawjood, Bilal, Roma-Rodrigues Catarina, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Particle and Particle Systems Characterization, Volume 41, Number 1, (2024) Abstract

Chronic myeloid leukemia (CML) is a rare malignant proliferative hematopoietic disease due to overexpression of a tyrosine kinase (TK) derived from the breakpoint cluster region (BCR)-abelson tyrosine-protein kinase 1 (ABL1) gene fusion. Imatinib (IM), blocks this tyrosine kinase, and is the first line TK inhibitor (TKI) used in CML treatment. In a high percentage of CML patients, a poor response with relapse and disease progression is associated to acquisition of resistance through different mechanisms, including dysregulation of c-MYC proto-oncogene. Gold nanoparticles (AuNPs) are shown to allow improved efficacy in gene silencing approaches toward cancer therapy. Herein, the silencing potential of AuNPs functionalized with antisense oligonucleotides selectively targeting the e14a2 BCR-ABL1 or the c-MYC, alone and combination is evaluated. It is demonstrated efficient silencing of gene expression that translated to a downregulation of protein levels in IM resistant CML cells (K562-IM). This combination allowed for increased death of the malignant cells. These Au-nanoconjugates may be useful to tackle IM-resistance mechanisms, providing an additional tool for future combinatory schemes to fight CML with imatinib resistance.

2021
A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid, Rodrigo, {Ana P. }, Grosso {Ana R. }, Baptista {Pedro V. }, Fernandes {Alexandra R. }, and Costa {Pedro M. } , Toxins, jan, Volume 13, Number 2, (2021) Abstract

The growing number of known venomous marine invertebrates indicates that chemical warfare plays an important role in adapting to diversified ecological niches, even though it remains unclear how toxins fit into the evolutionary history of these animals. Our case study, the Polychaeta Eulalia sp., is an intertidal predator that secretes toxins. Whole-transcriptome sequencing revealed proteinaceous toxins secreted by cells in the proboscis and delivered by mucus. Toxins and accompanying enzymes promote permeabilization, coagulation impairment and the blocking of the neuromuscular activity of prey upon which the worm feeds by sucking pieces of live flesh. The main neurotoxins ({"}phyllotoxins{"}) were found to be cysteine-rich proteins, a class of substances ubiquitous among venomous animals. Some toxins were phylogenetically related to Polychaeta, Mollusca or more ancient groups, such as Cnidaria. Some toxins may have evolved from non-toxin homologs that were recruited without the reduction in molecular mass and increased specificity of other invertebrate toxins. By analyzing the phylogeny of toxin mixtures, we show that Polychaeta is uniquely positioned in the evolution of animal venoms. Indeed, the phylogenetic models of mixed or individual toxins do not follow the expected eumetazoan tree-of-life and highlight that the recruitment of gene products for a role in venom systems is complex.

2020
Tackling Multidrug Resistance in Streptococci: From Novel Biotherapeutic Strategies to Nanomedicines, Alves-Barroco, Cinthia, Rivas-García Lorenzo, Fernandes {Alexandra R. }, and Baptista {Pedro Viana} , Frontiers in Microbiology, oct, Volume 11, (2020) Abstract

The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.

2019
Targeting cancer resistance via multifunctional gold nanoparticles, Pedrosa, Pedro, Corvo Luísa} {M., Ferreira-Silva Margarida, Martins Pedro, Carvalheiro {Manuela Colla}, Costa {Pedro M. }, Martins Carla, Martins {L. M. D. R. S., Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, nov, Volume 20, Number 21, (2019) Abstract

Resistance to chemotherapy is a major problem facing current cancer therapy, which is continuously aiming at the development of new compounds that are capable of tackling tumors that developed resistance toward common chemotherapeutic agents, such as doxorubicin (DOX). Alongside the development of new generations of compounds, nanotechnology-based delivery strategies can significantly improve the in vivo drug stability and target specificity for overcoming drug resistance. In this study, multifunctional gold nanoparticles (AuNP) have been used as a nanoplatform for the targeted delivery of an original anticancer agent, a Zn(II) coordination compound [Zn(DION)2]Cl2 (ZnD), toward better efficacy against DOX-resistant colorectal carcinoma cells (HCT116 DR). Selective delivery of the ZnD nanosystem to cancer cells was achieved by active targeting via cetuximab, NanoZnD, which significantly inhibited cell proliferation and triggered the death of resistant tumor cells, thus improving efficacy. In vivo studies in a colorectal DOX-resistant model corroborated the capability of NanoZnD for the selective targeting of cancer cells, leading to a reduction of tumor growth without systemic toxicity. This approach highlights the potential of gold nanoformulations for the targeting of drug-resistant cancer cells.

Targeting Tumor Microenvironment for Cancer Therapy, Roma-Rodrigues, Catarina, Mendes Rita, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, feb, Volume 20, Number 4, (2019) Abstract

Cancer development is highly associated to the physiological state of the tumor microenvironment (TME). Despite the existing heterogeneity of tumors from the same or from different anatomical locations, common features can be found in the TME maturation of epithelial-derived tumors. Genetic alterations in tumor cells result in hyperplasia, uncontrolled growth, resistance to apoptosis, and metabolic shift towards anaerobic glycolysis (Warburg effect). These events create hypoxia, oxidative stress and acidosis within the TME triggering an adjustment of the extracellular matrix (ECM), a response from neighbor stromal cells (e.g., fibroblasts) and immune cells (lymphocytes and macrophages), inducing angiogenesis and, ultimately, resulting in metastasis. Exosomes secreted by TME cells are central players in all these events. The TME profile is preponderant on prognosis and impacts efficacy of anti-cancer therapies. Hence, a big effort has been made to develop new therapeutic strategies towards a more efficient targeting of TME. These efforts focus on: (i) therapeutic strategies targeting TME components, extending from conventional therapeutics, to combined therapies and nanomedicines; and (ii) the development of models that accurately resemble the TME for bench investigations, including tumor-tissue explants, {"}tumor on a chip{"} or multicellular tumor-spheroids.

2017
Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: Implications for cancer diagnostics and therapy, Roma-Rodrigues, Catarina, Raposo {Luís R. }, Cabral Rita, Paradinha Fabiana, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, jan, Volume 18, Number 1, (2017) Abstract

Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

Targeting canine mammary tumours via gold nanoparticles functionalized with promising Co(II) and Zn(II) compounds, Raposo, {Luis R. }, Roma-Rodrigues Catarina, Jesus Joao, Martins {L. M. D. R. S., Pombeiro {Armando J. L. }, Baptista {P. V. }, and Fernandes {A. R. } , Veterinary and Comparative Oncology, dec, Volume 15, Number 4, p.1537–1542, (2017) Abstract

Background: Despite continuous efforts, the treatment of canine cancer has still to deliver effective strategies. For example, traditional chemotherapy with doxorubicin and/or docetaxel does not significantly increase survival in dogs with canine mammary tumors (CMTs). Aims: Evaluate the efficiency of two metal compounds [Zn(DION)2]Cl (TS26