Publications

Sort by: Type [ Year  (Desc)]
2023
Half-sandwich Ru(II) N-heterocyclic carbene complexes in anticancer drug design, {Lenis Rojas}, {Oscar A. }, Cordeiro Sandra, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Journal of Inorganic Biochemistry, aug, Volume 245, (2023) Abstract

The ruthenium arene fragment is a rich source for the design of anticancer drugs; in this design, the co-ligand is a critical factor for obtaining effective anticancer complexes. In comparison with other types of ligands, N-heterocyclic carbenes (NHCs) have been less explored, despite the versatility in structural modifications and the marked stabilization of metal ions, being these characteristics important for the design of metal drugs. However, notable advances have been made in the development of NHC Ruthenium arene as anticancer agents. These advances include high antitumor activities, proven both in in vitro and in in vivo models and, in some cases, with marked selectivity against tumorigenic cells. The versatility of the structure has played a fundamental role, since they have allowed a selective interaction with their molecular targets through, for example, bio-conjugation with known anticancer molecules. For this reason, the structure-activity relationship of the imidazole, benzimidazole, and abnormal NHC ruthenium (II) η6-arene complexes have been studied. Taking into account this study, several synthetic aspects are provided to contribute to the next generations of this kind of complexes. Moreover, in recent years nanotechnology has provided innovative nanomedicines, where half-sandwich Ruthenium(II) complexes are paving their way. In this review, the recent developments in nanomaterials functionalized with Ruthenium complexes for targeted drug delivery to tumors will also be highlighted.

Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization, Coelho, {Beatriz J. }, Neto {Joana P. }, Sieira Bárbara, Moura {André T. }, Fortunato Elvira, Martins Rodrigo, Baptista {Pedro V. }, Igreja Rui, and Águas Hugo , Sensors, Volume 23, Number 10, (2023) Abstract

Microfluidic-based platforms have become a hallmark for chemical and biological assays, empowering micro- and nano-reaction vessels. The fusion of microfluidic technologies (digital microfluidics, continuous-flow microfluidics, and droplet microfluidics, just to name a few) presents great potential for overcoming the inherent limitations of each approach, while also elevating their respective strengths. This work exploits the combination of digital microfluidics (DMF) and droplet microfluidics (DrMF) on a single substrate, where DMF enables droplet mixing and further acts as a controlled liquid supplier for a high-throughput nano-liter droplet generator. Droplet generation is performed at a flow-focusing region, operating on dual pressure: negative pressure applied to the aqueous phase and positive pressure applied to the oil phase. We evaluate the droplets produced with our hybrid DMF–DrMF devices in terms of droplet volume, speed, and production frequency and further compare them with standalone DrMF devices. Both types of devices enable customizable droplet production (various volumes and circulation speeds), yet hybrid DMF–DrMF devices yield more controlled droplet production while achieving throughputs that are similar to standalone DrMF devices. These hybrid devices enable the production of up to four droplets per second, which reach a maximum circulation speed close to 1540 µm/s and volumes as low as 0.5 nL.

2020
Hyperthermia induced by gold nanoparticles and visible light photothermy combined with chemotherapy to tackle doxorubicin sensitive and resistant colorectal tumor 3D spheroids, Roma-Rodrigues, Catarina, Pombo Inês, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , International Journal of Molecular Sciences, oct, Volume 21, Number 21, p.1–13, (2020) Abstract

Current cancer therapies are frequently ineffective and associated with severe side effects and with acquired cancer drug resistance. The development of effective therapies has been hampered by poor correlations between pre-clinical and clinical outcomes. Cancer cell-derived spheroids are three-dimensional (3D) structures that mimic layers of tumors in terms of oxygen and nutrient and drug resistance gradients. Gold nanoparticles (AuNP) are promising therapeutic agents which permit diminishing the emergence of secondary effects and increase therapeutic efficacy. In this work, 3D spheroids of Doxorubicin (Dox)-sensitive and -resistant colorectal carcinoma cell lines (HCT116 and HCT116-DoxR, respectively) were used to infer the potential of the combination of chemotherapy and Au-nanoparticle photothermy in the visible (green laser of 532 nm) to tackle drug resistance in cancer cells. Cell viability analysis of 3D tumor spheroids suggested that AuNPs induce cell death in the deeper layers of spheroids, further potentiated by laser irradiation. The penetration of Dox and earlier spheroid disaggregation is potentiated in combinatorial therapy with Dox, AuNP functionalized with polyethylene glycol (AuNP@PEG) and irradiation. The time point of Dox administration and irradiation showed to be important for spheroids destabilization. In HCT116-sensitive spheroids, pre-irradiation induced earlier disintegration of the 3D structure, while in HCT116 Dox-resistant spheroids, the loss of spheroid stability occurred almost instantly in post-irradiated spheroids, even with lower Dox concentrations. These results point towards the application of new strategies for cancer therapeutics, reducing side effects and resistance acquisition.

2016
Heteroleptic mononuclear compounds of ruthenium(II): Synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos, Lenis-rojas, {O. A. }, Fernandes {A. R. }, Roma-Rodrigues Catarina, Baptista {P. V. }, Marques F., Pérez-Fernández D., Guerra-Varela J., Sánchez-Magraner Lissete, Vázquez-garcía D., Torres López} {M., Fernández-Planells A., and Fernández-Rosas J. , Dalton Transactions, dec, Volume 45, Number 47, p.19127–19140, (2016) Abstract

The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a–5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2′-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P–{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(II) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 ± 2.82 μM and 20.02 ± 1.46 μM, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L−1 for compound 1a to 170.30 mg L−1 for compound 2a.

2015
Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine's tool Box, Martins, Pedro, Jesus Joao, Santos Sofia, Raposo {Luis R. }, Roma-Rodrigues Catarina, Baptista {Pedro Miguel Ribeiro Viana}, and de Fernandes {Maria Alexandra Núncio Carvalho Ramos} , Molecules, sep, Volume 20, Number 9, p.16852–16891, (2015) Abstract

The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.

2014
Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: Correlation with genotoxicity and metabolic alterations, Larguinho, Miguel, Costa P. M., c}alo Sousa Gon{\c, Diniz {Mário S. }, Costa {Maria Helena}, and Baptista Pedro , Journal of Applied Toxicology, dec, Volume 34, Number 12, p.1293–1302, (2014) Abstract

Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.