Evaluation of miR-155 silencing using a molecular beacon in human lung adenocarcinoma cell line,
Alexandre, Daniela, Fernandes {Alexandra R. }, Baptista {Pedro V. }, and Cruz Carla
, Talanta, jul, Volume 274, (2024)
AbstractLung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.
Exploiting Co(III)-Cyclopentadienyl Complexes To Develop Anticancer Agents,
{Franco Machado}, João, Cordeiro Sandra, Duarte {Joana N. }, Costa {Paulo J. }, Mendes {Paulo J. }, Garcia {Maria Helena}, Baptista {Pedro V. }, Fernandes {Alexandra R. }, and Morais {Tânia S. }
, Inorganic Chemistry, apr, Volume 63, Number 13, p.5783–5804, (2024)
AbstractIn recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.
Effect of mono- and dinuclear thiosemicarbazone platinacycles in the proliferation of a colorectal carcinoma cell line,
Reigosa-Chamorro, Francisco, Cordeiro Sandra, Pereira Teresa} {M., Filipe Beatriz, Baptista {Pedro V. }, Fernandes {Alexandra R. }, and Vila {José M. }
, Dalton Transactions, (2024)
AbstractHerein, we describe the synthesis and characterization of a series of thiosemicarbazone platinacycles. Their activity towards HCT116 and A2780 cancer cell lines as well as normal fibroblasts was explored and conclusions about the influence of their structures were drawn based on the results. Ligands L1-3, tetranuclear compounds [Pt(L1-3)]4, [Pt(L1-3)(PPh3)], and [Pt(L1-L3)2{Ph2P(CH2)4PPh2}], and phosphine derivatives, were deemed unpromising owing to their lack of activity. However, mono-coordinated diphosphine complexes [Pt(L1-L3)(Ph2PCH2PPh2-P)] showed high selectivity and low IC50 values, and their antiproliferative activity was further studied. The three studied derivatives 3a, 3b and 3c showed a fast internalization of HCT116 colorectal cancer cells with similar IC50 values, which induced a depolarization of mitochondrial membrane potential, with the subsequent triggering of apoptosis and autophagy in the case of 3c. In the case of compounds 3a and 3b, cell death mechanisms (extrinsic and intrinsic apoptosis, respectively) were triggered via the induction of reactive oxygen species (ROS). The three compounds were not toxic to a chicken embryo in vivo (after 48 h), and, importantly, showed an anti-angiogenic potential after exposure to the IC50 of compounds 3a, 3b and 3c.