Publications

Sort by: Author [ Title  (Asc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Bernacka-Wojcik, Iwona, Paulo Lopes, Ana Catarina Vaz, Bruno Veigas, Pawel Jerzy Wojcik, Pedro Simões, David Barata, Elvira Fortunato, Pedro V. Baptista, Hugo Águas, and Rodrigo Martins. "Bio-microfluidic platform for gold nanoprobe based DNA detection—application to Mycobacterium tuberculosis." Biosens Bioelectron 48 (2013): 87-93. AbstractWebsite

We have projected and fabricated a microfluidic platform for DNA sensing that makes use of an optical colorimetric detection method based on gold nanoparticles. The platform was fabricated using replica moulding technology in PDMS patterned by high-aspect-ratio SU-8 moulds. Biochips of various geometries were tested and evaluated in order to find out the most efficient architecture, and the rational for design, microfabrication and detection performance is presented. The best biochip configuration has been successfully applied to the DNA detection of Mycobacterium tuberculosis using only 3 µl on DNA solution (i.e. 90 ng of target DNA), therefore a 20-fold reduction of reagents volume is obtained when compared with the actual state of the art.

Cordeiro, Milton, Leticia Giestes, Joao Carlos Lima, and Pedro Baptista. "BioCode gold-nanobeacon for the detection of fusion transcripts causing chronic myeloid leukemia." Journal of Nanobiotechnology 38 (2016). AbstractWebsite

Background
Gold-nanobeacons (Au-nanobeacons) have proven to be versatile systems for molecular diagnostics and therapeutic actuators. Here, we present the development and characterization of two gold nanobeacons combined with Förster resonance energy transfer (FRET) based spectral codification for dual mode sequence discrimination. This is the combination of two powerful technologies onto a single nanosystem.

Results
We proved this concept to detect the most common fusion sequences associated with the development of chronic myeloid leukemia, e13a2 and e14a2. The detection is based on spectral shift of the donor signal to the acceptor, which allows for corroboration of the hybridization event. The Au-nanobeacon acts as scaffold for detection of the target in a homogenous format whose output capability (i.e. additional layer of information) is potentiated via the spectral codification strategy.

Conclusions
The spectral coded Au-nanobeacons permit the detection of each of the pathogenic fusion sequences, with high specificity towards partial complementary sequences. The proposed BioCode Au-nanobeacon concept provides for a nanoplatform for molecular recognition suitable for cancer diagnostics.