Publications

Sort by: Author Title Type [ Year  (Desc)]
2020
Beola, L., L. Asín, C. Roma-Rodrigues, Y. Fernández-Afonso, R. M. Fratila, D. Serantes, S. Ruta, R. W. Chantrell, A. R. Fernandes, P. V. Baptista, J. M. de la Fuente, V. Grazú, and L. Gutiérrez. "The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment." ACS Appl Mater Interfaces 12 (2020): 43474-43487. AbstractWebsite

n/a

Oliveira, B. B., B. Veigas, F. F. Carlos, A. Sánchez-Melsió, J. L. Balcázar, C. M. Borrego, and P. V. Baptista. "Water safety screening via multiplex LAMP-Au-nanoprobe integrated approach." Sci Total Environ 741 (2020): 140447. AbstractWebsite

n/a

2019
Oliveira, Hélder, Catarina Roma-Rodrigues, Ana Santos, Bruno Veigas, Natércia Brás, Ana Faria, Conceição Calhau, Victor de Freitas, Pedro V. Baptista, Nuno Mateus, Alexandra R. Fernandes, and Iva Fernandes. "GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach." Scientific Reports 9 (2019): 789. AbstractWebsite

Anthocyanins may protect against a myriad of human diseases. However few studies have been conducted to evaluate their bioavailability so their absorption mechanism remains unclear. This study aimed to evaluate the role of two glucose transporters (GLUT1 and GLUT3) in anthocyanins absorption in the human gastric epithelial cells (MKN-28) by using gold nanoparticles to silence these transporters. Anthocyanins were purified from purple fleshed sweet potatoes and grape skin. Silencing of GLUT1 and/or GLUT3 mRNA was performed by adding AuNP@GLUT1 and/or AuNP@GLUT3 to MKN-28 cells. Downregulation of mRNA expression occurred concomitantly with the reduction in protein expression. Malvidin-3-O-glucoside (Mv3glc) transport was reduced in the presence of either AuNP@GLUT1 and AuNP@GLUT3, and when both transporters were blocked simultaneously. Peonidin-3-(6′-hydroxybenzoyl)-sophoroside-5-glucoside (Pn3HBsoph5glc) and Peonidin-3-(6′-hydroxybenzoyl-6″-caffeoyl)-sophoroside-5-glucoside (Pn3HBCsoph5glc) were assayed to verify the effect of the sugar moiety esterification at glucose B in transporter binding. Both pigments were transported with a lower transport efficiency compared to Mv3glc, probably due to steric hindrance of the more complex structures. Interestingly, for Pn3HBCsoph5glc although the only free glucose is at C5 and the inhibitory effect of the nanoparticles was also observed, reinforcing the importance of glucose on the transport regardless of its position or substitution pattern. The results support the involvement of GLUT1 and GLUT3 in the gastric absorption of anthocyanins.

Veigas, B., A. Matias, T. Calmeiro, E. Fortunato, A. R. Fernandes, and P. V. Baptista. "Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis." Analyst 144 (2019): 3613-3619. AbstractWebsite

n/a

Santos, Miguel M., Luís R. Raposo, Gonçalo V. S. M. Carrera, Alexandra Costa, Madalena Dionísio, Pedro V. Baptista, Alexandra R. Fernandes, and Luís C. Branco. "Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug." ChemMedChem 14 (2019): 907-911. AbstractWebsite

Abstract Herein we report the synthesis of novel ionic liquids (ILs) and organic salts by combining ibuprofen as anion with ammonium, imidazolium, or pyridinium cations. The methodology consists of an acid–base reaction of neutral ibuprofen with cation hydroxides, which were previously prepared by anion exchange from the corresponding halide salts with Amberlyst A-26(OH). In comparison with the parent drug, these organic salts display higher solubility in water and biological fluids and a smaller degree of polymorphism, which in some cases was completely eliminated. With the exception of [C16Pyr][Ibu] and [N1,1,2,2OH1][Ibu], the prepared salts did not affect the viability of normal human dermal fibroblasts or ovarian carcinoma (A2780) cells. Therefore, these ibuprofen-based ionic liquids may be very promising lead candidates for the development of effective formulations of this drug.

Pedrosa, Pedro, Luísa M. Corvo, Margarida Ferreira-Silva, Pedro Martins, Manuela Colla Carvalheiro, Pedro M. Costa, Carla Martins, L. M. D. R. S. Martins, Pedro V. Baptista, and Alexandra R. Fernandes. "Targeting Cancer Resistance via Multifunctional Gold Nanoparticles." International Journal of Molecular Sciences 20 (2019). AbstractWebsite

Resistance to chemotherapy is a major problem facing current cancer therapy, which is continuously aiming at the development of new compounds that are capable of tackling tumors that developed resistance toward common chemotherapeutic agents, such as doxorubicin (DOX). Alongside the development of new generations of compounds, nanotechnology-based delivery strategies can significantly improve the in vivo drug stability and target specificity for overcoming drug resistance. In this study, multifunctional gold nanoparticles (AuNP) have been used as a nanoplatform for the targeted delivery of an original anticancer agent, a Zn(II) coordination compound [Zn(DION)2]Cl2 (ZnD), toward better efficacy against DOX-resistant colorectal carcinoma cells (HCT116 DR). Selective delivery of the ZnD nanosystem to cancer cells was achieved by active targeting via cetuximab, NanoZnD, which significantly inhibited cell proliferation and triggered the death of resistant tumor cells, thus improving efficacy. In vivo studies in a colorectal DOX-resistant model corroborated the capability of NanoZnD for the selective targeting of cancer cells, leading to a reduction of tumor growth without systemic toxicity. This approach highlights the potential of gold nanoformulations for the targeting of drug-resistant cancer cells.

Pedrosa, P., M. L. Corvo, M. Ferreira-Silva, P. Martins, MC Carvalheiro, P. M. Costa, C. Martins, D.RS L. M. Martins, P. V. Baptista, and A. R. Fernandes. "Targeting Cancer Resistance via Multifunctional Gold Nanoparticles." Int J Mol Sci 20 (2019). AbstractWebsite

n/a

2018
McCully, Mark, João Conde, Pedro V. Baptista, Margaret Mullin, Matthew J. Dalby, and Catherine C. Berry. "Nanoparticle-antagomiR based targeting of miR-31 to induce osterix and osteocalcin expression in mesenchymal stem cells." PLOS ONE 13 (2018): e0192562-. AbstractWebsite

Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation. Recent research highlighted the involvement of microRNAs in lineage commitment and terminal differentiation. Herein, gold nanoparticles that confer stability to short single stranded RNAs were used to deliver MiR-31 antagomiRs to both pre-osteoblastic cells and primary human MSCs in vitro. Results showed that blocking miR-31 led to an increase in osterix protein in both cell types at day 7, with an increase in osteocalcin at day 21, suggesting MSC osteogenesis. In addition, it was noted that antagomiR sequence direction was important, with the 5 prime reading direction proving more effective than the 3 prime. This study highlights the potential that miRNA antagomiR-tagged nanoparticles offer as novel therapeutics in regenerative medicine.

Cordeiro, Mílton, Ana Rita Otrelo-Cardoso, Dmitri I. Svergun, Petr V. Konarev, João Carlos Lima, Teresa Santos-Silva, and Pedro Viana Baptista. "Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor." ACS Chemical BiologyACS Chemical Biology 13 (2018): 1235-1242. AbstractWebsite

n/a

Daniela, Peixoto, Figueiredo Margarida, Malta Gabriela, Roma‐Rodrigues Catarina, Baptista Pedro V., Fernandes Alexandra R., Barroso Sónia, Carvalho Ana Luísa, Afonso Carlos A. M., Ferreira Luisa M., and Branco Paula S. "Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero‐Arylidene‐9(10H)‐Anthrone." European Journal of Organic ChemistryEuropean Journal of Organic Chemistry 2018 (2018): 545-549. AbstractWebsite

A new and never before reported hetero?arylidene?9(10H)?anthrone structure (4) was unexpectedly isolated on reaction of 1,2?dimethyl?3?ethylimidazolium iodide (2) and 9?anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally confirmed by X?ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed, indicating its applicability in biological systems. Compound 4 interacts with CT?DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity [Kb = 2.0?(±0.20)???105 m?1], which is 10?? higher than that described for doxorubicin [Kb = 3.2?(±0.23)???104 m?1]. Furthermore, compound 4 quenches the fluorescence emission of a GelRed?CT?DNA system with a quenching constant (KSV) of 3.3?(±0.3)???103 m?1 calculated by the Stern?Volmer equation.

Pedrosa, Pedro, Rita Mendes, Rita Cabral, Luisa M. D. R. S. Martins, Pedro V. Baptista, and Alexandra R. Fernandes. "Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells." Scientific Reports 8 (2018). Abstract

n/a

Baptista, Pedro V., Matthew P. McCusker, Andreia Carvalho, Daniela A. Ferreira, Niamh M. Mohan, Marta Martins, and Alexandra R. Fernandes. "Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”." Frontiers in Microbiology 9 (2018): 1441. AbstractWebsite

Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.

McCully, Mark, Joao Conde, Pedro V. Baptista, Margaret Mullin, Matthew J. Dalby, and Catherine C. Berry. "Nanoparticle-antagomiR based targeting of miR-31 to induce osterix and osteocalcin expression in mesenchymal stem cells." Plos One 13 (2018). Abstract

n/a

Restani, Rita B., Rita F. Pires, Anna Tolmatcheva, Rita Cabral, V. Baptista, Pedro, Alexandra R. Fernandes, Teresa Casimiro, Vasco D. B. Bonifacio, and Ana Aguiar-Ricardo. "POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy." Chemistryopen 7 (2018): 772-779. Abstract

n/a

2017
Cordeiro, Milton, Lara Carvalho, Joana Silva, Leonor Saúde, Alexandra R. Fernandes, and Pedro V. Baptista. "Gold nanobeacons for tracking gene silencing in Zebrafish." Nanomaterials (2017). AbstractWebsite

The use of gold nanoparticles for effective gene silencing has demonstrated its potential as a tool for gene expression experiments and for the treatment of several diseases. Here, we used a gold nanobeacon designed to specifically silence the enhanced green fluorescence protein (EGFP) mRNA in embryos of a fli-EGFP transgenic zebrafish line, while simultaneously allowing the tracking and localization of the silencing events via the beacon’s emission. Fluorescence imaging measurements demonstrated a decrease of the EGFP emission with a concomitant increase in the fluorescence of the Au-nanobeacon. Furthermore, microinjection of the Au-nanobeacon led to a negligible difference in mortality and malformations in comparison to the free oligonucleotide, indicating that this system is a biocompatible platform for the administration of gene silencing moieties. Together, these data illustrate the potential of Au-nanobeacons as tools for in vivo zebrafish gene modulation with low toxicity which may be used towards any gene of interest.

Roma-Rodrigues, Catarina, Luis Raposo, Rita Cabral, Fabiana Paradinha, Pedro V. Baptista, and Alexandra R. Fernandes. "Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: implications in cancer diagnostics and Therapy." Int. J. Mol. Sci. 18 (2017): 162. AbstractWebsite

Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

Carlos, F. F., B. Veigas, A. S. Matias, G. Doria, O. Flores, and P. V. Baptista. "Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms." Biotechnol Rep (Amst) 16 (2017): 21-25. AbstractWebsite

n/a

Coelho, Beatriz, Bruno Veigas, Elvira Fortunato, Rodrigo Martins, Hugo Aguas, Rui Igreja, and Pedro V. Baptista. "Digital Microfluidics for Nucleic Acid Amplification." Sensors 17 (2017). Abstract

n/a

Coelho, Beatriz Jorge, Bruno Veigas, Hugo Aguas, Elvira Fortunato, Rodrigo Martins, Pedro Viana Baptista, and Rui Igreja. "A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection." Sensors 17 (2017). Abstract

n/a

Raposo, L. R., C. Roma-Rodrigues, P. Faisca, M. Alves, J. Henriques, MC Carvalheiro, M. L. Corvo, P. V. Baptista, A. J. Pombeiro, and A. R. Fernandes. "Immortalization and characterization of a new canine mammary tumour cell line FR37-CMT." Veterinary and Comparative Oncology 15 (2017): 952-967. Abstract

n/a

Fernandes, Alexandra R., Joao Jesus, Pedro Martins, Sara Figueiredo, Daniela Rosa, Luisa M. R. D. R. S. Martins, Maria Luisa Corvo, Manuela C. Carvalheiro, Pedro M. Costa, and Pedro V. Baptista. "Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents." Journal of Controlled Release 245 (2017): 52-61. Abstract

n/a

Veigas, Bruno, Joana Pinto, Raquel Vinhas, Tomas Calmeiro, Rodrigo Martins, Elvira Fortunato, and Pedro Viana Baptista. "Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform." Biosensors & Bioelectronics 91 (2017): 788-795. Abstract

n/a

2016
Cordeiro, Milton, Leticia Giestes, Joao Carlos Lima, and Pedro Baptista. "BioCode gold-nanobeacon for the detection of fusion transcripts causing chronic myeloid leukemia." Journal of Nanobiotechnology 38 (2016). AbstractWebsite

Background
Gold-nanobeacons (Au-nanobeacons) have proven to be versatile systems for molecular diagnostics and therapeutic actuators. Here, we present the development and characterization of two gold nanobeacons combined with Förster resonance energy transfer (FRET) based spectral codification for dual mode sequence discrimination. This is the combination of two powerful technologies onto a single nanosystem.

Results
We proved this concept to detect the most common fusion sequences associated with the development of chronic myeloid leukemia, e13a2 and e14a2. The detection is based on spectral shift of the donor signal to the acceptor, which allows for corroboration of the hybridization event. The Au-nanobeacon acts as scaffold for detection of the target in a homogenous format whose output capability (i.e. additional layer of information) is potentiated via the spectral codification strategy.

Conclusions
The spectral coded Au-nanobeacons permit the detection of each of the pathogenic fusion sequences, with high specificity towards partial complementary sequences. The proposed BioCode Au-nanobeacon concept provides for a nanoplatform for molecular recognition suitable for cancer diagnostics.

Vinhas, Raquel, Milton Cordeiro, Pedro Pedrosa, Alexandra R. Fernandes, and Pedro V. Baptista. "Current trends in molecular diagnostics of chronic myeloid leukemia." Leukemia & Lymphoma (2016): 1-14. AbstractWebsite

Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

Conde, Joao, Furong Tian, Jesus M. de la Fuente, and Pedro V. Baptista. "Editorial: Cancer Nanotheranostics: What Have We Learned So Far?" Frontiers in Chemistry 71 (2016).Website