Publications

Sort by: [ Author  (Asc)] Title Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Bao, Chenchen, Joao Conde, Ester Polo, Pablo del Pino, Maria Moros, Pedro V. Baptista, Valeria Grazu, Daxiang Cui, and Jesus M. de la Fuente. "A promising road with challenges: where are gold nanoparticles in translational research?" Nanomedicine 9 (2014): 2353-2370. Abstract

n/a

Baptista, P. V., M. Koziol-Montewka, J. Paluch-Oles, and al.et. "Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples." CLINICAL CHEMISTRY 52 (2006): 1433-1434. Abstract

n/a

Baptista, Pedro V. "RNA quantification with gold nanoprobes for cancer diagnostics." Clinics in Laboratory Medicine 32 (2012): 1-13.
Baptista, Pedro Viana. "Could gold nanoprobes be an important tool in cancer diagnostics?" Expert Review of Molecular Diagnostics 12 (2012): 541-543. Abstract

n/a

Baptista, Pedro Viana. "Cancer Nanotechnology - Prospects for Cancer Diagnostics and Therapy." Current Cancer Therapy Reviews 5 (2009): 80-88.
Baptista, P., G. Doria, A. Matias, L. Osorio, E. Pereira, and F. Ricardo. Direct detection of mutations/SNPs using DNA-derivatised gold nanoparticles In Congress of Clinical Chemistry and Laboratory Medicine. Jena, Germany, 2005.
Baptista, P., E. Pereira, P. Eaton, and al.et. "Gold nanoparticles for the development of clinical diagnosis methods." ANALYTICAL AND BIOANALYTICAL CHEMISTRY 391 (2008): 943-950. Abstract

n/a

Baptista, Pedro V., Matthew P. McCusker, Andreia Carvalho, Daniela A. Ferreira, Niamh M. Mohan, Marta Martins, and Alexandra R. Fernandes. "Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”." Frontiers in Microbiology 9 (2018): 1441. AbstractWebsite

Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.

Baptista, Pedro V. "Nanodiagnostics: leaving the research lab to enter the clinics?" Diagnosis 1 (2014): 305-309. AbstractWebsite

Nanotechnology has provided a plethora of valuable tools that can be applied for the detection of biomolecules and analytes relevant for diagnosis purposes – nanodiagnostics. This surging new field of molecular diagnostics has been revolutionizing laboratory procedures and providing new ways to assess disease biomarkers with increased sensitivity. While most of the reported nanodiagnostics systems are proof-of-concepts that demonstrate their efficacy in the lab, several nanodiagnostics platforms have already matured to a level that open the way for effective translation to the clinics. Nanodiagnostics platforms (e.g., gold nanoparticles containing systems) have been remarkably useful for the development of molecular diagnosis strategies for DNA/RNA detection and characterization, including systems suitable for point-of-care. How near are nanodiagnostics to go from the bench to the bedside?

Baptista, Pedro Viana. "Precision nanomedicine in cancer: how far are we from personalization?" Expert Review of Precision Medicine and Drug Development 1 (2016): 227-228. Abstract

n/a

Baptista, P. V., G. Doria, P. Quaresma, M. Cavadas, C. S. Neves, I. Gomes, P. Eaton, E. Pereira, and R. Franco. "Nanoparticles in molecular diagnostics." Prog Mol Biol Transl Sci 104 (2011): 427-88. AbstractWebsite

n/a

Baptista, Pedro V., Gonçalo Doria, and João Conde. Alloy metal nanoparticles for multicolor cancer diagnostics In Colloidal Quantum Dots/Nanocrystals for Biomedical Applications VI. San Francisco, CA, USA: Proc. of SPIE Vol. 7909, SPIE 2011, 2011.
Baptista, P., E. Pereira, P. Eaton, G. Doria, A. Miranda, I. Gomes, P. Quaresma, and R. Franco. "Gold nanoparticles for the development of clinical diagnosis methods." Anal Bioanal Chem 391 (2008): 943-50. AbstractWebsite

n/a

Baptista, P., G. Doria, D. Henriques, E. Pereira, and R. Franco. "Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles." Journal of Biotechnology 119 (2005): 111-117. Abstract

n/a

Baptista, Pedro Viana. "Principles in genetic risk assessment." THERAPEUTICS AND CLINICAL RISK MANAGEMENT 1 (2005): 15-20. AbstractWebsite

Risk assessment constitutes an essential component of genetic counseling and testing, and the genetic risk should be estimated as accurately as possible for individual and family decision making. All relevant information retrieved from population studies and pedigree and genetic testing enhances the accuracy of the assessment of an individual’s genetic risk. This review will focus on the following general aspects implicated in risk assessment: the increasing genetic information regarding disease; complex traits versus Mendelian disorders; and the influence of the environment and disease susceptibility. The influence of these factors on risk assessment will be discussed.

Baptista, Pedro Viana. "3h Gold nanobeacons: a potential nanotheranostics platform." Nanomedicine 9 (2014): 2247-2250. Abstract

n/a

Baptista, P. V., G. Doria, P. Quaresma, M. Cavadas, C. S. Neves, I. Gomes, P. Eaton, E. Pereira, and R. Franco. "Nanoparticles in molecular diagnostics." Prog. Mol. Biol. Transl. Sci. 104 (2011): 427-488.
Baptista, Pedro V., Goncalo Doria, Pedro Quaresma, Miguel Cavadas, Cristina S. Neves, Ines Gomes, Peter Eaton, Eulalia Pereira, Ricardo Franco, and A. Villaverde. "Nanoparticles in Molecular Diagnostics." Nanoparticles in Translational Science and Medicine 104 (2011): 427-488. Abstract

n/a

Baptista, Pedro, Eulália Pereira, Peter Eaton, Gonçalo Doria, Adelaide Miranda, Inês Gomes, Pedro Quaresma, and Ricardo Franco. "Gold Nanoparticles for the Development of Clinical Diagnosis Methods." Anal Bioanal Chem. 391 (2008): 943-950.
Baptista, P. V. "Nanodiagnostics: leaving the research lab to enter the clinics?" Diagnosis (Berl) 1 (2014): 305-309. AbstractWebsite

n/a

Baptista, Pedro V., Gonçalo Doria, Pedro Quaresma, Miguel Cavadas, Cristina S. Neves, Inês Gomes, Peter Eaton, Eulália Pereira, and Ricardo Franco. "Nanoparticles in molecular diagnostics. Nanoparticles in Translational Science and Medicine." In Progress in Molecular Biology and Translational Science, edited by A. Villaverde and Michael P. Conn. Elsevier, 2012.
Baptista, Pedro Viana. "Gold nanobeacons: A potential nanotheranostics platform." Nanomedicine 9 (2014): 2247-50.Website
Beola, L., L. Asín, C. Roma-Rodrigues, Y. Fernández-Afonso, R. M. Fratila, D. Serantes, S. Ruta, R. W. Chantrell, A. R. Fernandes, P. V. Baptista, J. M. de la Fuente, V. Grazú, and L. Gutiérrez. "The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment." ACS Appl Mater Interfaces 12 (2020): 43474-43487. AbstractWebsite

n/a

Bernacka-Wojcik, Iwona, Susana Ribeiro, Pawel Jerzy Wojcik, Pedro Urbano Alves, Tito Busani, Elvira Fortunato, Pedro Viana Baptista, José António Covas, Hugo Águas, Loic Hilliou, and Rodrigo Martins. " Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length." RSC ADVANCES 4 (2014). AbstractWebsite

This paper presents the performance of a passive planar rhombic micromixer with diamond-shaped obstacles and a rectangular contraction between the rhombi. The device was experimentally optimized using water for high mixing efficiency and a low pressure drop over a wide range of Reynolds numbers (Re = 0.1–117.6) by varying geometrical parameters such as the number of rhombi, the distance between obstacles and the contraction width. Due to the large amount of data generated, statistical methods were used to facilitate and improve the results of the analysis. The results revealed a rank of factors influencing mixing efficiency: Reynolds number > number of rhombi > contraction width > inter-obstacles distance. The pressure drop measured after three rhombi depends mainly on Re and inter-obstacle distance. The resulting optimum geometry for the low Re regime has a contraction width of 101 μm and inter-obstacles distance of 93 μm, while for the high Re regime a contraction width of 400 μm and inter-obstacle distance of 121 μm are more appropriate. These mixers enabled 80% mixing efficiency creating a pressure drop of 6.0 Pa at Re = 0.1 and 5.1 × 104 Pa at Re = 117.6, with a mixer length of 2.5 mm. To the authors' knowledge, the developed mixer is one of the shortest planar passive micromixers reported to date.