Publications

Export 43 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Cordeiro, T, Santos AFM, Nunes G, Cunha G, Sotomayor JC, Fonseca IM, Florence Danède, Dias CJ, Cardoso MM, Correia NT, Viciosa TM, Dionísio M.  2016.  Accessing the Physical State and Molecular Mobility of Naproxen Confined to Nanoporous Silica Matrixes. The Journal of Physical Chemistry C. 120:14390-14401., Number 26 AbstractWebsite

The pharmaceutical drug naproxen was loaded in three different silica hosts with pore diameters of 2.4 (MCM), 3.2 (MCM), and 5.9 nm (SBA), respectively: napMCM\_2.4 nm, napMCM\_3.2 nm, and napSBA\_5.9 nm. To access the guest physical state in the prepared composites, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and attenuated total reflectance Fourier transform infrared spectroscopy were used. The different techniques provided complementary information on a molecular population that was revealed to be distributed among different environments, namely the pore core, the inner pore wall, and the outer surface. It was found that naproxen is semicrystalline in the higher pore size matrix being able to crystallize inside pores; after melting it undergoes full amorphization. In the case of the lower pore size matrix, naproxen crystallizes outside pores due to an excess of filling while most of the remaining fraction is incorporated inside the pores as amorphous. Crystallinity in these two composites was observed by the emergence of the Bragg peaks in the XRD analysis, whereas for napMCM\_3.2 nm only the amorphous halo was detected. The latter only exhibits the step due to the glass transition by DSC remaining stable as amorphous at least for 12 months. The glass transition in the three composites is abnormally broad, shifting to higher temperatures as the pore size decreases, coherent with the slowing down of molecular mobility as probed by dielectric relaxation spectroscopy. For napSBA\_5.9 nm the dielectric response was deconvoluted in two processes: a hindered surface (S-) process due to molecules interacting with the inner pore wall and a faster α-relaxation associated with the dynamic glass transition due to molecules relaxing in the pore core, which seems a manifestation of true confinement effects. The drug incorporation inside a nanoporous matrix, mainly in 3.2 nm pores, was revealed to be a suitable strategy to stabilize the highly crystallizable drug naproxen in the amorphous/supercooled state and to control its release from the silica matrix, allowing full delivery after 90 min in basic media.

Godino-Ojer, M, Matos I, Bernardo M, Carvalho R, G.P. Soares OS, Durán-Valle C, Fonseca IM, Mayoral PE.  2020.  Acidic porous carbons involved in the green and selective synthesis of benzodiazepines. Catalysis Today. 357:64-73. AbstractWebsite

Eco-sustainable and recyclable porous carbons are reported as metal-free catalysts for the synthesis of benzodiazepines for the first time. The porous carbons were able to efficiently catalyse the synthesis of benzodiazepine 1 from o-phenylendiamine 2 and acetone 3 under mild conditions. Both acidic functions and the porosity of the catalysts were determinant features. High conversion values were obtained when using HNO3 oxidized carbons. The highest selectivity to benzodiazepine 1 was obtained in the presence of the most microporous catalyst N-N, which is indicative of the great influence of porous properties. Stronger acid sites and high microporosity of the carbon treated with H2SO4 yield benzodiazepine 1 with total selectivity.

Dias, D, Bernardo M, Lapa N, Pinto F, Matos I, Fonseca I.  2018.  Activated carbons from the Co-pyrolysis of rice wastes for Cr(III) removal. Chemical Engineering Transactions. 65:601-606.
Dias, D, Bernardo M, Matos I, Fonseca I, Pinto F, Lapa N.  2020.  Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. Journal of Cleaner Production. 267:121993. AbstractWebsite

Chromium is one of the most important raw materials for the European Union. Adsorption has become an important process for the recovery of metals from wastewaters, which has led to a demand for low-cost and eco-friendly adsorbents. The objective of this work was to use new and renewable carbon-based adsorbents from rice wastes in the removal/recovery of Cr(III) from synthetic and real wastewaters. Rice wastes were submitted to co-pyrolysis and the resulting char was optimized through physical and/or chemical activations/treatments. A commercial activated carbon was used for comparison purposes. All adsorbents were characterized (including an ecotoxicity test for the char precursor) and submitted to Cr(III) removal assays from a synthetic solution, in which two solid/liquid ratios (S/L) were tested (5 and 10 g/L). The CO2 activated carbon at a S/L = 5 g/L was the biomass-derived adsorbent that performed better, obtaining a maximum Cr(III) uptake capacity of 9.23 mg/g comparable to the one obtained by the commercial adsorbent at the same S/L (9.80 mg/g). The good results on this biomass-derived carbon were due to the effective volatile matter removal during the activation (from 22.7 to 4.25% w/w), which increased both surface area (from <5.0 to 325 m2/g) and ash content (from 30.0 to 40.4% w/w), allowing an increase in Cr(III) removal due to ion exchange mechanism and porosity development. The best adsorbent, under optimized conditions, was also applied to a chromium rich industrial wastewater. The results obtained in this real case application demonstrated a competition effect due to the presence of other ions.

Godinho, D, Dias D, Bernardo M, Lapa N, Fonseca I, Lopes H, Pinto F.  2017.  Adding value to gasification and co-pyrolysis chars as removal agents of Cr3+. Journal of Hazardous Materials. 321:173-182. AbstractWebsite

The present work aims to assess the efficiency of chars, obtained from the gasification and co-pyrolysis of rice wastes, as adsorbents of Cr3+ from aqueous solution. GC and PC chars, produced in the gasification and co-pyrolysis, respectively, of rice husk and polyethylene were studied. Cr3+ removal assays were optimised for the initial pH value, adsorbent mass, contact time and Cr3+ initial concentration. GC showed a better performance than PC with about 100% Cr3+ removal, due to the pH increase that caused Cr precipitation. Under pH conditions in which the adsorption prevailed (pH<5.5), GC presented the highest uptake capacity (21.1mg Cr3+ g−1 char) for the following initial conditions: 50mg Cr3+ L−1; pH 5; contact time: 24h;L/S ratio: 1000mLg−1. The pseudo-second order kinetic model showed the best adjustment to GC experimental data. Both the first and second order kinetic models fitted well to PC experimental data. The ion exchange was the dominant phenomenon on the Cr3+ adsorption by GC sample. Also, this char significantly reduced the ecotoxicity of Cr3+ solutions for the bacterium Vibrio fischeri. GC char proved to be an efficient material to remove Cr3+ from aqueous solution, without the need for further activation.

Rodrigues, ARF, Maia MRG, Cabrita ARJ, Oliveira HM, Bernardo M, Lapa N, Fonseca I, Trindade H, Pereira JL, Fonseca AJM.  2020.  Assessment of potato peel and agro-forestry biochars supplementation on in vitro ruminal fermentation. PeerJ. 8:e9488. AbstractWebsite

Background The awareness of environmental and socio-economic impacts caused by greenhouse gas emissions from the livestock sector leverages the adoption of strategies to counteract it. Feed supplements can play an important role in the reduction of the main greenhouse gas produced by ruminants—methane (CH\textsubscript{4}). In this context, this study aims to assess the effect of two biochar sources and inclusion levels on rumen fermentation parameters \textit{in vitro}. Methods Two sources of biochar (agro-forestry residues, AFB, and potato peel, PPB) were added at two levels (5 and 10%, dry matter (DM) basis) to two basal substrates (haylage and corn silage) and incubated 24-h with rumen inocula to assess the effects on CH\textsubscript{4} production and main rumen fermentation parameters \textit{in vitro}. Results AFB and PPB were obtained at different carbonization conditions resulting in different apparent surface areas, ash content, pH at the point of zero charge (pHpzc), and elemental analysis. Relative to control (0% biochar), biochar supplementation kept unaffected total gas production and yield (mL and mL/g DM, \textit{p} = 0.140 and \textit{p} = 0.240, respectively) and fermentation pH (\textit{p} = 0.666), increased CH\textsubscript{4}production and yield (mL and mL/g DM, respectively, \textit{p} = 0.001) and ammonia-N (NH\textsubscript{3}-N, \textit{p} = 0.040), and decreased total volatile fatty acids (VFA) production (\textit{p} < 0.001) and H\textsubscript{2} generated and consumed (\textit{p} ≤ 0.001). Biochar sources and inclusion levels had no negative effect on most of the fermentation parameters and efficiency. Acetic:propionic acid ratio (\textit{p} = 0.048) and H\textsubscript{2} consumed (\textit{p} = 0.019) were lower with AFB inclusion when compared to PPB. Biochar inclusion at 10% reduced H\textsubscript{2} consumed (\textit{p} < 0.001) and tended to reduce total gas production (\textit{p} = 0.055). Total VFA production (\textit{p} = 0.019), acetic acid proportion (\textit{p} = 0.011) and H\textsubscript{2} generated (\textit{p} = 0.048) were the lowest with AFB supplemented at 10%, no differences being observed among the other treatments. The basal substrate affected most fermentation parameters independently of biochar source and level used. Discussion Biochar supplementation increased NH\textsubscript{3}-N content, \textit{iso}-butyric, \textit{iso}-valeric and valeric acid proportions, and decreased VFA production suggesting a reduced energy supply for microbial growth, higher proteolysis and deamination of substrate N, and a decrease of NH\textsubscript{3}-N incorporation into microbial protein. No interaction was found between substrate and biochar source or level on any of the parameters measured. Although AFB and PPB had different textural and compositional characteristics, their effects on the rumen fermentation parameters were similar, the only observed effects being due to AFB included at 10%. Biochar supplementation promoted CH\textsubscript{4} production regardless of the source and inclusion level, suggesting that there may be other effects beyond biomass and temperature of production of biochar, highlighting the need to consider other characteristics to better identify the mechanism by which biochar may influence CH\textsubscript{4} production.

B
Batista, MKS, Mestre AS, Matos I, Fonseca IM, Carvalho AP.  2016.  Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Adv.. 6:45419-45427.: The Royal Society of Chemistry AbstractWebsite

Biodiesel production generates low particle size rapeseed waste (recovered from warehouse air filtration systems) that was herein explored as promising biomass precursor of chemically activated carbons. The influence of several experimental parameters on the porosity development was investigated. No benefit was observed when solution impregnation was made nor a significant dependence of the biomass : K2CO3 ratio was observed and{,} as expected{,} high porosity development was obtained only for treatments at 700 [degree]C. Microporous materials with apparent surface area around 1000 m2 g-1 were obtained comparing favorably with literature data regarding activated carbons from rapeseed processing by-products. A selected lab-made sample and two commercial carbons were tested as adsorbents of caffeine from aqueous solution. Although commercial materials present a quicker adsorption rate{,} regarding adsorption capacity the lab-made sample reaches the same value attained by a benchmark material. The regeneration tests made over the rapeseed derived carbon through heat treatments at 600 [degree]C for 1 hour under N2 flow proved that at least two exhaustion-regeneration cycles can be made since the material retains a caffeine adsorption capacity similar to that of the fresh carbon. Therefore{,} a waste management problem of biodiesel industry - rapeseed residue - can be transformed in a valuable material with promising properties for environmental remediation processes.

do Fraga, AC, Quitete CPB, Ximenes VL, Sousa-Aguiar EF, Fonseca IM, Rego AMB.  2016.  Biomass derived solid acids as effective hydrolysis catalysts. Journal of Molecular Catalysis A: Chemical. 422:248-257. AbstractWebsite

The conversion of cellulose into products with higher added value often includes a depolymerization step to obtain glucose, its fundamental unity. The depolymerization reaction is carried out via hydrolysis of the β-1,4-glycosidic bond. The search for a solid acid catalyst capable of breaking these bonds is gaining increasing prominence in the literature. In this regard, sulfonated carbons have shown promising results. This work evaluated the use of a residue from the extraction of palm oil as raw material for the production of sulfonated carbons. The raw material was carbonized and sulfonated. The obtained solid acids were tested in the hydrolysis of cellobiose, a dimer of glucose often used as a model compound for cellulose. The hydrolysis reaction is the first step in converting renewable carbon sources into chemical products and biofuels. Some aspects were investigated, as the effect of carbonization temperature on the concentration of sulfonic groups, the results showing that the content thereof reached a maximum value at 300°C. Regarding the hydrolysis of cellobiose, it has been identified that there is a relationship between the concentration of sulfonic acid groups and the activity of these catalysts. However, there is a drop in the turnover number as the amount of sulfonic acid sites increases. This was related to a preferred position sulfonation mechanism. Furthermore, sulfonated carbons showed higher activity than the commercial acid resins, indicating that this material may be a good option for the generation of solid acid catalysts.

Surra, E, Bernardo M, Lapa N, Esteves IAAC, Fonseca I, Mota JPB.  2019.  Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. Journal of Environmental Management. 249:109351. AbstractWebsite

Maize Cob Waste (MCW) is available worldwide in high amounts, as maize is the most produced cereal in the world. MCW is generally left in the crop fields, but due to its low biodegradability it has a negligible impact in soil fertility. Moreover, MCW can be used as substrate to balance the C/N ratio during the Anaerobic co-Digestion (AcoD) with other biodegradable substrates, and is an excellent precursor for the production of Activated Carbons (ACs). In this context, a biorefinery is theoretically discussed in the present review, based on the idea that MCW, after proper pre-treatment is valorised as precursor of ACs and as co-substrate in AcoD for biomethane generation. This paper provides an overview on different scientific and technological aspects that can be involved in the development of the proposed biorefinery; the major topics considered in this work are the following ones: (i) the most suitable pre-treatments of MCW prior to AcoD; (ii) AcoD process with regard to the critical parameters resulting from MCW pre-treatments; (iii) production of ACs using MCW as precursor, with the aim to use these ACs in biogas conditioning (H2S removal) and upgrading (biomethane production), and (iv) an overview on biogas upgrading technologies.

C
Nogueira, M, Matos I, Bernardo M, Pinto F, Lapa N, Surra E, Fonseca I.  2019.  Char from Spent Tire Rubber: A Potential Adsorbent of Remazol Yellow Dye. C—Journal of Carbon Research. 5, Number 4 AbstractWebsite

A char produced from spent tire rubber showed very promising results as an adsorbent of Remazol Yellow (RY) from aqueous solutions. Spent tire rubber was submitted to a pyrolysis process optimized for char production. The obtained char was submitted to chemical, physical, and textural characterizations and, subsequently, applied as a low-cost adsorbent for dye (RY) removal in batch adsorption assays. The obtained char was characterized by relatively high ash content (12.9% wt), high fixed-carbon content (69.7% wt), a surface area of 69 m2/g, and total pore volume of 0.14 cm3/g. Remazol Yellow kinetic assays and modelling of the experimental data using the pseudo-first and pseudo-second order kinetic models demonstrated a better adjustment to the pseudo-first order model with a calculated uptake capacity of 14.2 mg RY/g char. From the equilibrium assays, the adsorption isotherm was fitted to both Langmuir and Freundlich models; it was found a better fit for the Langmuir model to the experimental data, indicating a monolayer adsorption process with a monolayer uptake capacity of 11.9 mg RY/g char. Under the experimental conditions of the adsorption assays, the char presented positive charges at its surface, able to attract the deprotonated sulfonate groups (SO3−) of RY; therefore, electrostatic attraction was considered the most plausible mechanism for dye removal.

Dias, D, Lapa N, Bernardo M, Ribeiro W, Matos I, Fonseca I, Pinto F.  2018.  Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresource Technology. 266:139-150. AbstractWebsite

Blends of rice waste streams were submitted to co-gasification assays. The resulting chars (G1C and G2C) were characterized and used in Cr(III) removal assays from a synthetic solution. A Commercial Activated Carbon (CAC) was used for comparison purposes. The chars were non-porous materials mainly composed by ashes (68.3–92.6% w/w). The influences of adsorbent loading (solid/liquid ratio – S/L) and initial pH in Cr(III) removal were tested. G2C at a S/L of 5 mg L−1 and an initial pH of 4.50 presented an uptake capacity significantly higher than CAC (7.29 and 2.59 mg g−1, respectively). G2C was used in Cr(III) removal assays from an industrial wastewater with Cr(III) concentrations of 50, 100 and 200 mg L−1. Cr(III) removal by precipitation (uptake capacity ranging from 11.1 to 14.9 mg g−1) was more effective in G2C, while adsorption (uptake capacity of 16.1 mg g−1) was the main removal mechanism in CAC.

D
Rijo, B, Lemos F, Fonseca I, Vilelas A.  2020.  Development of a model for an industrial acetylene hydrogenation reactor using plant data – Part I. Chemical Engineering Journal. 379:122390. AbstractWebsite

In this work, a dynamic model of an industrial acetylene hydrogenation reactor with a front-end configuration was developed, based on plant operation data. This type of reactor operates in transient state, not only due to the natural fluctuations in operating conditions but also due to the effects caused by the deactivation of the catalyst. To develop the dynamic model of the acetylene hydrogenation reactor a thorough study of the effect of operating conditions was performed; the influence of variables such as the inlet temperature of the 1st reactor, the flowrate, carbon monoxide concentration, on the activity, selectivity and stability of the catalyst was examined by choosing adequate periods of the operation of the reactor. To understand the reaction mechanism of this system, several published kinetics were tested but only one was finally fitted to the industrial data, to interpret the operation of the acetylene hydrogenation reactor. A set of operation periods was used to develop the model which was then validated by applying the model to a different set of operation periods. As a conclusion, the dynamic model that was developed and validated, using actual plant operation data, was able to adequately describe the outlet temperatures of the three reactors in the system as well as the outlet acetylene concentration of the 3rd reactor.

E
Surra, E, Bernardo M, Lapa N, Esteves IAAC, Fonseca I, Mota JP.  2018.  Enhanced Biogas Production through Anaerobic co-Digestion of OFMSW with Maize Cob Waste Pre-Treated with Hydrogen Peroxide. Chemical Engineering Transactions. 65:121-126.
Godino-Ojer, M, Milla-Diez L, Matos I, Durán-Valle CJ, Bernardo M, Fonseca IM, Pérez Mayoral E.  2018.  Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem. 10:5215-5223., Number 22 AbstractWebsite

Abstract This work reports for the first time a new series of promising porous catalytic carbon materials, functionalized with Lewis and Brønsted acid sites useful in the green synthesis of 2,3-dihydro-1H-1,5-benzodiazepine – nitrogen heterocyclic compounds. Benzodiazepines and derivatives are fine chemicals exhibiting interesting therapeutic properties. Carbon materials have been barely investigated in the synthesis of this type of compounds. Two commercial carbon materials were selected exhibiting different textural properties: i) Norit RX3 (N) as microporous sample and ii) mesoporous xerogel (X), both used as supports of ZrO2 (Zr) and ZrO2/SO42− (SZr). The supported SZr led to higher conversion values and selectivities to the target benzodiazepine. Both chemical and textural properties influenced significantly the catalytic performance. Particularly relevant are the results concerning the non-sulfated samples, NZr and XZr, that were able to catalyze the reaction leading to the target benzodiazepine with high selectivity (up to 80 %; 2 h). These results indicated an important role of the carbon own surface functional groups, avoiding the use of H2SO4. Even very low amounts of SZr supported on carbon reveal high activity and selectivity. Therefore, the carbon materials herein reported can be considered an efficient and sustainable alternative bifunctional catalysts for the benzodiazepine synthesis.

Mestre, AS, Nabiço A, Figueiredo PL, Pinto ML, Santos SMCS, Fonseca IM.  2016.  Enhanced clofibric acid removal by activated carbons: Water hardness as a key parameter. Chemical Engineering Journal. 286:538-548. AbstractWebsite

Clofibric acid is the metabolite and active principle of blood lipid regulators, it represents the class of acidic pharmaceuticals, and is one of the most persistent drug residues detected in the aquatic environment worldwide. This interdisciplinary work evaluates the effect of solution pH and water hardness in clofibric acid adsorption onto commercial activated carbons. Kinetic and equilibrium assays revealed that the highest clofibric acid removal efficiencies (>70%) were attained at pH 3, and that at pH 8 water hardness degree plays a fundamental role in the adsorption process. In hard water at pH 8 the removal efficiency values increased by 22 or 46% points depending on the carbon sample. Adsorbents’ textural properties also affect the adsorption process since for the microporous sample (CP) the increase of water hardness has a great influence in kinetic and equilibrium data, while for the micro+mesoporous carbon (VP) the variation of the water hardness promoted less significant changes. At pH 3 the increase of water hardness leads to changes in the adsorption mechanism of clofibric acid onto CP carbon signaled by a transition from an S-type to an L-type curve. At pH 8 the change from deionized water to hard water doubles the maximum adsorption capacity of sample CP (101.7mgg−1 vs 211.9mgg−1, respectively). The adsorption enhancement, with water hardness under alkaline conditions, was reasoned in terms of calcium complexation with clofibrate anion exposed by molecular modeling and conductivity studies. Ca2+ complexation by other acidic organic compounds may also occur, and should be considered, since it can play a fundamental role in improved design of water treatment processes employing activated carbons.

Silva, CAC, Figueiredo FCA, Rodrigues R, Sairre MI, Gonçalves M, Matos I, Fonseca IM, Mandelli D, Carvalho WA.  2016.  Enhancing the biodiesel manufacturing process by use of glycerin to produce hyacinth fragrance, Jun. Clean Technologies and Environmental Policy. 18:1551–1563., Number 5 AbstractWebsite

Oxidized and sulfonated-activated carbons (AC) were tested in the catalytic conversion of glycerol by acetalization reactions. The solids were treated with concentrated nitric acid and/or fuming sulfuric acid (AC, AC-N, AC-S, and AC-NS). The presence of sulfur and an increase in the acidity of the solids demonstrate the suitability of the oxidation as well as the sulfonation process, especially in the sample treated with concentrated nitric acid and fuming sulfuric acid (AC-NS). The best catalyst for the reaction of glycerol acetalization with phenylacetaldehyde was AC-NS, with a phenylacetaldehyde conversion of 95 {%} after 90 min at 383 K and selectivity of 88 and 12 {%}, respectively, to dioxolane and dioxane. These products can be used as hyacinth fragrance flavoring compounds. Furthermore, a contribution of homogeneous catalysis in these systems was not identified. Thus, we identified a possibility of glycerol conversion, a biodiesel by-product, into value-added products by suitable catalysts produced from activated carbons.

Fernandes, MJ, Moreira MM, Paíga P, Dias D, Bernardo M, Carvalho M, Lapa N, Fonseca I, Morais S, Figueiredo S, Delerue-Matos C.  2019.  Evaluation of the adsorption potential of biochars prepared from forest and agri-food wastes for the removal of fluoxetine. Bioresource Technology. 292:121973. AbstractWebsite

Twelve biochars from forest and agri-food wastes (pruning of Quercus ilex, Eucalyptus grandis, Pinus pinaster, Quercus suber, Malus pumila, Prunus spinosa, Cydonia oblonga, Eriobotrya japonica, Juglans regia, Actinidia deliciosa, Citrus sinensis and Vitis vinifera) were investigated as potential low-cost and renewable adsorbents for removal of a commonly used pharmaceutical, fluoxetine. Preliminary adsorption experiments allowed to select the most promising adsorbents, Quercus ilex, Cydonia oblonga, Eucalyptus, Juglans regia and Vitis vinifera pruning material. They were characterized by proximate, elemental and mineral analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, determination of specific surface area and pH at the point of zero charge. Batch and equilibrium studies were performed, and the influence of pH was evaluated. The equilibrium was reached in less than 15 min in all systems. The maximum adsorption capacity obtained was 6.41 mg/g for the Eucalyptus biochar, which also demonstrated a good behavior in continuous mode (packed column).

G
Castanheiro, JE, Vital J, Fonseca IM, Ramos AM.  2019.  Glycerol conversion into biofuel additives by acetalization with pentanal over heteropolyacids immobilized on zeolites. Catalysis Today. AbstractWebsite

Dodecamolydbophosphoric acid (HPMo) immobilized on USY zeolite was used as a catalyst for the acetalization of glycerol with pentanal at 70 °C. Catalysts were prepared with different amounts of heteropolyacid, and the most active sample was the HPMo2@Y catalyst (1.1 wt.%). The products of glycerol acetalization with pentanal were (2-butyl-1,3-dioxolan-4-yl)methanol, a five-member ring compound, and 2-butyl-1,3-dioxan-5-ol, a six-member ring compound. Good values of selectivity for the five-member ring compound (80–85%) were obtained with all materials. The reaction conditions were optimized using HPMo2@Y as a catalyst. The optimal conditions were determined to be 70 °C reaction temperature with 0.3 g catalyst and a 1:2.5 M ratio of glycerol to pentanal. The catalytic stability of HPMo2@Y was studied. The acetalization of glycerol with pentanal was performed using the same sample. High catalytic activity for HPMo2@Y was observed.

Castanheiro, JE, Vital J, Fonseca IM, Ramos AM.  2020.  Glycerol conversion into biofuel additives by acetalization with pentanal over heteropolyacids immobilized on zeolites. Catalysis Today. 346:76-80. AbstractWebsite

Dodecamolydbophosphoric acid (HPMo) immobilized on USY zeolite was used as a catalyst for the acetalization of glycerol with pentanal at 70 °C. Catalysts were prepared with different amounts of heteropolyacid, and the most active sample was the HPMo2@Y catalyst (1.1 wt.%). The products of glycerol acetalization with pentanal were (2-butyl-1,3-dioxolan-4-yl)methanol, a five-member ring compound, and 2-butyl-1,3-dioxan-5-ol, a six-member ring compound. Good values of selectivity for the five-member ring compound (80–85%) were obtained with all materials. The reaction conditions were optimized using HPMo2@Y as a catalyst. The optimal conditions were determined to be 70 °C reaction temperature with 0.3 g catalyst and a 1:2.5 M ratio of glycerol to pentanal. The catalytic stability of HPMo2@Y was studied. The acetalization of glycerol with pentanal was performed using the same sample. High catalytic activity for HPMo2@Y was observed.

H
Bernardo, M, Rodrigues S, Lapa N, Matos I, Lemos F, Batista MKS, Carvalho AP, Fonseca I.  2016.  High efficacy on diclofenac removal by activated carbon produced from potato peel waste, Aug. International Journal of Environmental Science and Technology. 13:1989–2000., Number 8 AbstractWebsite

In the present study, a novel porous carbon obtained by K2CO3 activation of potato peel waste under optimized conditions was applied for the first time as liquid-phase adsorbent of sodium diclofenac in parallel with a commercial activated carbon. The biomass-activated carbon presented an apparent surface area of 866 m2 g−1 and well-developed microporous structure with a large amount of ultramicropores. The obtained carbon presented leaching and ecotoxicological properties compatible with its safe application to aqueous medium. Kinetic data of laboratory-made and commercial sample were best fitted by the pseudo-second-order model. The commercial carbon presented higher uptake of diclofenac, but the biomass carbon presented the higher adsorption rate which was associated with its higher hydrophilic nature which favoured external mass transfer. Both adsorbents presented adsorption isotherms that were best fitted by Langmuir model. The biomass carbon and the commercial carbon presented adsorption monolayer capacities of 69 and 146 mg g−1, and Langmuir constants of 0.38 and 1.02 L mg−1, respectively. The better performance of the commercial sample was related to its slightly higher micropore volume, but the most remarkable effect was the competition of water molecules in the biomass carbon.

Risso, R, Ferraz P, Meireles S, Fonseca I, Vital J.  2018.  Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Applied Catalysis A: General. 567:56-64. AbstractWebsite

Calcium oxide (CaO) catalysts derived from waste shells of egg, oyster and clam were prepared and used in the methanolysis of soybean oil. Eggshells were subjected to ultrasound irradiation and mollusc shells were subjected to calcination-hydration-calcination cycles to increase the surface area of CaO and improve its catalytic activity. The catalysts were characterized by XRD, TPD-CO2, TG-DSC, DLS and N2 adsorption, while the catalytic activity for the methanolysis of soybean oil was evaluated. Five hours of sonication reduced the CaO particle size by 34%, which resulted in a 56% increase in the activity. Two cycles of hydration-dehydration applied to the material obtained by calcination of oyster shells provided CaO with 27 m2 g−1. The transesterification rate was 2.5 times higher than that obtained with the untreated sample. After treatments, highly active CaO was obtained which indicates its enormous potential for biodiesel production. A kinetic model assuming the adsorption of methoxide anions on the surface of CaO particles was proposed.

I
Inocêncio, S, Cordeiro T, Matos I, Florence Danède, Sotomayor JC, Fonseca IM, Correia NT, Corvo MC, Dionísio M.  2021.  Ibuprofen incorporated into unmodified and modified mesoporous silica: From matrix synthesis to drug release. Microporous and Mesoporous Materials. 310:110541. AbstractWebsite

Aiming to rationalize the release profile of an incorporated pharmaceutical drug in terms of its mobility, driven by guest-host interactions, the poorly water-soluble ibuprofen drug was loaded in a mesoporous inorganic silica matrix with unmodified (MCM-41) and modified surface (MCM-41sil) by post-synthesis silylation, both having pore sizes   3 nm. The single calorimetric detection of a broad glass transition step for both ibuprofen composites indicates full drug amorphization, confirmed by the only appearance of an amorphous halo in the powder XRD patterns. Moreover, a gradient profile is disclosed by the heat flux derivative plot in the glass transition, in coherence with the thermogravimetric profile that shows a multi-step decomposition trace for confined ibuprofen in these matrixes. While identical guest dynamics, as probed by dielectric relaxation spectroscopy, were found in both dehydrated composites, a significant molecular population with faster relaxation exists in the hydrated state for the drug inside the unmodified matrix. This was rationalized as the concurrence of true confinement effects, which manifest under nanometer dimensions, and greater water affinity of the unmodified matrix, forcing the drug molecules to be placed mostly in the pore core. Finite size effects are also felt in both dehydrated composites, however guest-host interactions give origin to a dominant population with slowed down mobility that governs the overall guest dynamics. In spite of an inferior number of active sites for drug adsorption in the silylated matrix, a faster ibuprofen delivery in phosphate buffer (pH = 6.8) was observed when the drug is released from unmodified MCM-41 in the hydrated state. Therefore, our results suggest that a relevant role is played by water molecules, which impair a strong guest adsorption in the host surface more efficiently than the limited surface modification, influence the higher ratio of a faster population in the pore core and facilitate the diffusion of the aqueous releasing media inside pores.

K
Lyubchik, S, Lygina E, Lyubchyk A, Lyubchik S, Loureiro JM, Fonseca IM, Ribeiro AB, Pinto MM, Figueiredo AMSá.  2016.  The Kinetic Parameters Evaluation for the Adsorption Processes at ``Liquid–Solid'' Interface. Electrokinetics Across Disciplines and Continents: New Strategies for Sustainable Development. (Ribeiro, Alexandra B., Mateus, Eduardo P., Couto, Nazaré, Eds.).:81–109., Cham: Springer International Publishing Abstract

The kinetic parameters of the adsorption process at ``liquid–solid'' interface have been evaluated through the sets of time-based experiments of the Cr(III) adsorption under varying temperature, initial metal concentration, and carbon loading for two sets of the commercially available activated carbons and their post-oxidized forms with different texture and surface functionality.

M
Surra, E, Bernardo M, Lapa N, Esteves I, Fonseca I, Mota JP.  2018.  Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. Waste Management. 72:193-205. AbstractWebsite

In the present work, the enhancement of biogas and methane yields through anaerobic co-digestion of the pre-hydrolised Organic Fraction of Municipal Solid Wastes (hOFMSW) and Maize Cob Wastes (MCW) in a lab-scale thermophilic anaerobic reactor was tested. In order to increase its biodegradability, MCW were submitted to an initial pre-treatment screening phase as follows: (i) microwave (MW) irradiation catalysed by NaOH, (ii) MW catalysed by glycerol in water and alkaline water solutions, (iii) MW catalysed by H2O2 with pH of 9.8 and (iv) chemical pre-treatment at room temperature catalysed by H2O2 with 4 h reaction time. The pre-treatments cataysed by H2O2 were performed with 2% MCW (wMCW/v alkaline water) at ratios of 0.125, 0.25, 0.5 and 1.0 (wH2O2/wMCW). The pre-treatment that presented the most favourable balance between sugars, lignin, cellulose and hemicellulose solubilisations, as well as low production of phenolic compound and furfural (inhibitors), was the chemical pre-treatment catalysed by H2O2, at room temperature, with a ratio of 0.5 wH2O2/wMCW (Pre1). This Pre1 was then optimised testing reaction times of 1, 2 and 3 days at a different pH (11.5) and MCW percentage (10% w/v). The optimised pre-treatment that presented the best results, considering the same criteria defined above, was the one carried out during 3 days, at pH 9.8 and 10% MCW w/v (Pre2). The anaerobic reactor was initially fed with the hOFMSW obtained from the hydrolysis tank of an industrial AD plant. The hOFMSW was than co-digested with MCW submitted to the pre-treatment Pre1. In another assay, hOFMSW was co-digested with MCW submitted pre-treatment Pre 2. The co-digestion of hOFMSW + Pre1 increased the biogas yield by 38.9% and methane yield by 29.7%, when compared to the results obtained with hOFMSW alone. The co-digestion of hOFMSW + Pre2 increased biogas yield by 46.0% and CH4 yield by 36.3%. In both cases, the methane content obtained in the biogas streams was above 66% v/v. These results show that pre-treatment with H2O2, at room temperature, is a promising low cost way to valorize MCW through co-digestion with hOFMSW.

Ferreira, RC, Dias D, Fonseca I, Bernardo M, Pimenta JLCW, Lapa N, de Barros MASD.  2020.  Multi-component adsorption study by using bone char: modelling and removal mechanisms. Environmental Technology. :1-16.: Taylor & Francis AbstractWebsite
n/a