Publications

Export 51 results:
Sort by: Author Title Type [ Year  (Desc)]
2021
Inocencio, S, Cordeiro T, Matos I, Danede F, Sotomayor JC, Fonseca IM, Correia NT, Corvo MC, Dionisio M.  2021.  Ibuprofen incorporated into unmodified and modified mesoporous silica: From matrix synthesis to drug release, {JAN}. MICROPOROUS AND MESOPOROUS MATERIALS. 310:110541. AbstractWebsite

{Aiming to rationalize the release profile of an incorporated pharmaceutical drug in terms of its mobility, driven by guest-host interactions, the poorly water-soluble ibuprofen drug was loaded in a mesoporous inorganic silica matrix with unmodified (MCM-41) and modified surface (MCM-41sil) by post-synthesis silylation, both having pore sizes similar to 3 nm. The single calorimetric detection of a broad glass transition step for both ibuprofen com-posites indicates full drug amorphization, confirmed by the only appearance of an amorphous halo in the powder XRD patterns. Moreover, a gradient profile is disclosed by the heat flux derivative plot in the glass transition, in coherence with the thermogravimetric profile that shows a multi-step decomposition trace for confined ibuprofen in these matrixes. While identical guest dynamics, as probed by dielectric relaxation spectroscopy, were found in both dehydrated composites, a significant molecular population with faster relaxation exists in the hydrated state for the drug inside the unmodified matrix. This was rationalized as the concurrence of true confinement effects, which manifest under nanometer dimensions, and greater water affinity of the unmodified matrix, forcing the drug molecules to be placed mostly in the pore core. Finite size effects are also felt in both dehydrated composites, however guest-host interactions give origin to a dominant population with slowed down mobility that governs the overall guest dynamics. In spite of an inferior number of active sites for drug adsorption in the silylated matrix, a faster ibuprofen delivery in phosphate buffer (pH = 6.8) was observed when the drug is released from unmodified MCM-41 in the hydrated state. Therefore, our results suggest that a relevant role is played by water molecules, which impair a strong guest adsorption in the host surface more efficiently than the limited surface modification, influence the higher ratio of a faster population in the pore core and facilitate the diffusion of the aqueous releasing media inside pores.}

Cordeiro, R, Beira MJ, Cruz C, Figueirinhas JL, Corvo MC, Almeida PL, Rosatella AA, Afonso CAM, Daniel CI, Sebastiao PJ.  2021.  Tuning the H-1 NMR Paramagnetic Relaxation Enhancement and Local Order of {[}Aliquat](+)-Based Systems Mixed with DMSO, {JAN}. International Journal of Molecular Sciences. 22:706., Number {2} AbstractWebsite

{Understanding the behavior of a chemical compound at a molecular level is fundamental, not only to explain its macroscopic properties, but also to enable the control and optimization of these properties. The present work aims to characterize a set of systems based on the ionic liquids {[}Aliquat]{[}Cl] and {[}Aliquat]{[}FeCl4] and on mixtures of these with different concentrations of DMSO by means of H-1 NMR relaxometry, diffusometry and X-ray diffractometry. Without DMSO, the compounds reveal locally ordered domains, which are large enough to induce order fluctuation as a significant relaxation pathway, and present paramagnetic relaxation enhancement for the {[}Aliquat]{[}Cl] and {[}Aliquat]{[}FeCl4] mixture. The addition of DMSO provides a way of tuning both the local order of these systems and the relaxation enhancement produced by the tetrachloroferrate anion. Very small DMSO volume concentrations (at least up to 1%) lead to enhanced paramagnetic relaxation without compromising the locally ordered domains. Larger DMSO concentrations gradually destroy these domains and reduce the effect of paramagnetic relaxation, while solvating the ions present in the mixtures. The paramagnetic relaxation was explained as a correlated combination of inner and outer-sphere mechanisms, in line with the size and structure differences between cation and anion. This study presents a robust method of characterizing paramagnetic ionic systems and obtaining a consistent analysis for a large set of samples having different co-solvent concentrations.}

2020
Silva, W, Zanatta M, Ferreira AS, Corvo MC, Cabrita EJ.  2020.  Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis, {OCT}. International Journal of Molecular Sciences. 20:7745., Number {20} AbstractWebsite

{In the last few years, ionic liquids (ILs) have been the focus of extensive studies concerning the relationship between structure and properties and how this impacts their application. Despite a large number of studies, several topics remain controversial or not fully answered, such as: the existence of ion pairs, the concept of free volume and the effect of water and its implications in the modulation of ILs physicochemical properties. In this paper, we present a critical review of state-of-the-art literature regarding structure-property relationship of ILs, we re-examine analytical theories on the structure-property correlations and present new perspectives based on the existing data. The interrelation between transport properties (viscosity, diffusion, conductivity) of IL structure and free volume are analysed and discussed at a molecular level. In addition, we demonstrate how the analysis of microscopic features (particularly using NMR-derived data) can be used to explain and predict macroscopic properties, reaching new perspectives on the properties and application of ILs.}

dos Santos, LM, Bernard FL, Polesso BB, Pinto IS, Frankenberg CC, Corvo MC, Almeida PL, Cabrita E, Menezes S, Einloft S.  2020.  Designing silica xerogels containing RTIL for CO2 capture and CO2/CH4 separation: Influence of ILs anion, cation and cation side alkyl chain length and ramification. Journal of Environmental Management. 268:110340. AbstractWebsite

CO2 separation from natural gas is considered to be a crucial strategy to mitigate global warming problems, meet product specification, pipeline specs and other application specific requirements. Silica xerogels (SX) are considered to be potential materials for CO2 capture due to their high specific surface area. Thus, a series of silica xerogels functionalized with imidazolium, phosphonium, ammonium and pyridinium-based room-temperature ionic liquids (RTILs) were synthesized. The synthesized silica xerogels were characterized by NMR, helium pycnometry, DTA-TG, BET, SEM and TEM. CO2 sorption, reusability and CO2/CH4 selectivity were assessed by the pressure-decay technique. Silica xerogels containing IL demonstrated advantages compared to RTILs used as separation solvents in CO2 capture processes including higher CO2 sorption capacity and faster sorption/desorption. Using fluorinated anion for functionalization of silica xerogels leads to a higher affinity for CO2 over CH4. The best performance was obtained by SX- [bmim] [TF2N] (223.4 mg CO2/g mg/g at 298.15 K and 20 bar). Moreover, SX- [bmim] [TF2N] showed higher CO2 sorption capacity as compared to other reported sorbents. CO2 sorption and CO2/CH4 selectivity results were submitted to an analysis of variance and the means compared using Tukey's test (5%).

Duczinski, R, Polesso BB, Bernard FL, Ferrari HZ, Almeida PL, Corvo MC, Cabrita EJ, Menezes S, Einloft S.  2020.  Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica. Journal of Environmental Chemical Engineering. AbstractWebsite

Imidazolium-based ionic liquids (ILs) with different cation alkyl chain ([i-C5mim] or [C4mim]) and inorganic anions ([Cl−], [Tf2N−], [PF6−] and [DCA−]) were synthesized and immobilized in commercial mesoporous silica. The synthesized supported ILs (SILs) were characterized using NMR, FTIR, TGA, BET, SEM and TEM. CO2 sorption capacity, reusability and CO2/N2 selectivity were assessed by the pressure-decay technique. The effects of IL concentration, cation and anion chemical structure in CO2 sorption capacity and CO2/N2 separation performance were evaluated. Tests evidenced that the presence of branching on the cation alkyl side chain increases CO2/N2 selectivity. The immobilization of the IL [i-C5TPIm][Cl] on mesoporous silica in different concentrations (50, 20, 10 and 5 %) revealed that lower IL concentration results in higher CO2 sorption capacity. Immobilization of ILs containing fluorinated anions at low concentrations in the mesoporous silica support may promote the improvement of the CO2/N2 selectivity without interfering on CO2 sorption capacity of the original support. CO2 sorption capacity value shown by sample SIL-5 % - [i-C5TPIm][Tf2N] (79.50 ± 0.70 mg CO2  g-1) was close to the value obtained for the pristine mesoporous silica (81.70 ± 2.20 mg CO2 g-1) and the selectivity (4.30 ± 0.70) was more than twice of the one obtained for the support alone (2.32 ± 0.4). Recycle tests demonstrated that the ILs immobilized in mesoporous silica samples are stable, providing a new option to be used in CO2 capture processes.

Mouquinho, A, Corvo MC, Almeida PL, Feio GM, Sotomayor J.  2020.  Influence of chain length of prepolymers in permanent memory effect of PDLC assessed by solid-state NMR. Liquid Crystals. 47:522–530., Number 4: Taylor & Francis AbstractWebsite

The relationship between linear chain (ethylene oxide units) length of polymerisable monomers with morphology, electro-optical properties and 13C nuclear magnetic resonance (NMR) spectroscopy of the corresponding polymer-dispersed liquid crystal (PDLC) films was investigated. The preferred liquid crystal molecule alignment and permanent memory effect of PDLC were greatly influenced by the length of the molecular chain of prepolymers to be incorporated as a polymer matrix. By increasing the number of ethylene oxide in prepolymer chain and maintaining the number of functionalities (polymerisable groups in each monomer molecule), the permanent memory effect of PDLC increased, as proved by solid-state 13C NMR spectroscopy.

2019
Echeverria, C, Almeida PL, Figueirinhas JL, Godinho MH.  2019.  Understanding the influence of carbon nanotubes on the flow behavior of liquid crystalline hydroxypropylcellulose: A Rheo-NMR study, {OCT 10}. POLYMER. 180:121675. AbstractWebsite

Hydroxypropylcellulose (HPC) is an important cellulose derivative that has been widely studied due to its water-solubility, biocompatibility and biodegradability, but even more significant due to its ability to form liquid crystalline phases. HPC is able to form, under certain conditions, chiral nematic (cholesteric) structures in water solutions. Previous work confirmed that films prepared from liquid crystalline HPC/water solutions (LC-HPC) gave rise to anisotropic networks, with similar mechanical and optical characteristics of Liquid Crystalline Elastomers (LCE), capable to respond to humidity. It was also demonstrated that the incorporation of carbon nanotubes (CNTs) significantly improved the actuator responsiveness. In the work presented herein, we investigate how the incorporation of carbon nanotubes affects the flow behavior of LC-HPC solutions, and thus the structure-properties relationship, through a detailed Rheo-NMR study. As observed from the results, when shearing the samples, the degree of order reached (maximum quadrupolar peak splitting) by LC-HPC solutions increases with CNT content. Regarding the subsequent relaxation process, only the incorporation of 0.01 wt% of CNTs (lowest content) contributes to a faster recovery of cholesteric structure.

Lopes, MM, Barrulas RV, Paiva TG, Ferreira ASD, Zanatta M, Corvo MC.  2019.  Molecular Interactions in Ionic Liquids: The NMR Contribution towards Tailored Solvents. Nuclear Magnetic Resonance. : IntechOpen Abstract

Ionic liquids have been on the spotlight of chemical research field in the last decades. Their physical properties (low vapor pressure, thermal stability, and conductivity) and the possibility of fine tuning make them a versatile class of compounds for a wide range of applications, such as catalysis, energy, and material sciences. Ionic liquids can establish multiple intermolecular interactions with solutes such as electrostatic, van der Waals, or hydrogen bonds. The prospect of designing ionic liquid structures toward specific applications has attracted the attention to these alternative solvents. However, their rational design demands a molecular detailed view, and Nuclear Magnetic Resonance is a unique and privileged technique for this purpose, as it provides atomic resolution and at the same time enables the study of dynamic information. In this chapter, we provide an overview about the application of Nuclear Magnetic Resonance spectroscopy techniques as a methodology for the rational design of ionic liquids as solvents for small organic compounds, CO2 capture, and polymers such as cellulose focusing mainly in the last 10 years.

Queda, F, Covas G, Silva T, Santos CA, Bronze MR, Cañada FJ, Corvo MC, Filipe SR, Marques MMB.  2019.  A top-down chemo-enzymatic approach towards N-acetylglucosamine-N-acetylmuramic oligosaccharides: Chitosan as a reliable template. Carbohydrate Polymers. 224:115133.: Elsevier AbstractWebsite

An unprecedented approach towards oligosaccharides containing N-acetylglucosamine-N-acetylmuramic (NAG-NAM) units was developed. These novel bacterial cell wall surrogates were obtained from chitosan via a top down approach involving both chemical and enzymatic reactions. The chemical modification of chitosan using a molecular clamp based strategy, allowed obtaining N-acetylglucosamine-N-acetylmuramic (NAG-NAM) containing oligomers. Intercalation of NAM residues was confirmed through the analysis of oligosaccharide fragments from enzymatic digestion and it was found that this route affords NAG-NAM containing oligosaccharides in 33% yield. These oligosaccharides mimic the carbohydrate basic skeleton of most bacterial cell surfaces. The oligosaccharides prepared are biologically relevant and will serve as a platform for further molecular recognition studies with different receptors and enzymes of both bacterial cell wall and innate immune system. This strategy combining both chemical modification and enzymatic digestion provides a novel and simple route for an easy access to bacterial cell wall fragments – biologically important targets.

2018
Beira, JM, Silva MP, Condesso M, Cosme P, Almeida PL, Corvo M, Sebastião PJ, Figueirinhas JL, de Pinho MN.  2018.  Molecular order and dynamics of water in hybrid cellulose acetate–silica asymmetric membranes. Molecular Physics. :1–8.: Taylor & Francis AbstractWebsite

In this work 2H NMR spectroscopy and 1H NMR relaxometry and diffusometry were used to characterise water order and dynamics in cellulose acetate/silica asymmetric membranes. Two hydrated membranes were characterised allowing the identification of extra ordering of the water molecules and the presence in each membrane of up to two spectral components with different degrees of order and different T1 values. The mechanism behind this order increase was ascribed to the rapid exchange of the water molecules between the pore walls and its interior. T1 relaxometry dispersions allowed for the identification of the relevant mechanisms of pore-confined water motion, with rotations mediated by translational displacements (RMTD) as the dominant mechanism in the low frequency region. Using the RMTD low cut off frequency along with the in situ directly measured diffusion constant it was possible do determine characteristic lengths of correlated water motion in both membranes studied, which fall in ranges compatible with typical pore dimensions in similar membranes.

Braz, L, Grenha A, Corvo MC, Lourenço JP, Ferreira D, Sarmento B, da Costa ARM.  2018.  Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers. 181:974–985.: Elsevier AbstractWebsite

The development of LBG-based nanoparticles intending an application in oral immunization is presented. Nanoparticle production occurred by mild polyelectrolyte complexation, requiring the chemical modification of LBG. Three LBG derivatives were synthesized, namely a positively charged ammonium derivative (LBGA) and negatively charged sulfate (LBGS) and carboxylate (LBGC) derivatives. These were characterized by Fourier-transform infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, gel permeation chromatography, and x-ray diffraction. As a pharmaceutical application was aimed, a toxicological analysis of the derivatives was performed by both MTT test and LDH release assay.

Several nanoparticle formulations were produced using LBGA or chitosan (CS) as positively charged polymers, and LBGC or LBGS as negatively charged counterparts, producing nanoparticles with adequate properties regarding an application in oral immunization.

2017
Berride, F, Troche-Pesqueira E, Feio G, Cabrita EJ, Sierra T, Navarro-Vázquez A, Cid MM.  2017.  Chiral amplification of disodium cromoglycate chromonics induced by a codeine derivative. Soft Matter. 13(38):6810-6815. AbstractWebsite

Chromonic liquid crystals (CLC) are lyotropic phases formed by discotic mesogens in water. Simple chiral dopants such as amino acids have been reported to turn chromonic liquid crystals into their cholesteric counterparts. Here we report a chirality amplification effect in the nematic phase of a 9 wt% disodium cromoglycate (DSCG) lyotropic liquid crystal (LLC) upon doping with a water-soluble codeine derivative. The transition on cooling the isotropic to the nematic phase showed the presence of homochiral spindle-shaped droplets (tactoids). NMR DOSY experiments on a triple gradient probe revealed a small degree of diffusion anisotropy for the alkaloid embedded in the liquid crystal structure. These results in combination with XRD, CD and POM experiments agree with a supramolecular aggregation model based on simple columnar stacks.

Peixoto, D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS.  2017.  DEVELOPMENTS IN THE REACTIVITY OF 2-METHYL IMIDAZOLIUM SALTS. The Journal of Organic Chemistry. 82(12):6232–6241.: American Chemical Society AbstractWebsite

Unexpected and unusual reactivity of 2-methylimidazolium salts toward aryl-N-sulfonylimines and aryl aldehydes is here reported. Upon reaction with aryl-N-sulfonylimines, the addition product, arylethyl-2-imidazolium-1-tosylamide (3), is formed with moderate to good yields, while upon reaction with aldehydes, the initial addition product (6) observed in NMR and HPLC–MS experimental analysis is postulated by us as an intermediate to the final conversion to carboxylic acids. Studies in the presence and absence of molecular oxygen allow us to conclude that the imidazolium salts is crucial for the oxidation. A detailed mechanistic study was carried out to provide insights regarding this unexpected reactivity.

Ferreira, J, Santos T, Pereira P, Corvo MC, Queiroz JA, Sousa F, Cruz C.  2017.  Naphthalene amine support for G-quadruplex isolation. Analyst. 142(16):2982-2994.: Royal Society of Chemistry AbstractWebsite

G-quadruplex (G4) is involved in many biological processes, such as telomere function, gene expression and DNA replication. The selective isolation of G4 using affinity ligands that bind tightly and selectively is a valuable strategy for discovering new G4 binders for the separation of G4 from duplexes or the discrimination of G4 structures. In this work, one affinity chromatographic support was prepared using a naphthalene amine as a G4 binder. The ligand was immobilized on epoxy-activated Sepharose CL-6B using a long spacer arm and was characterized by HR-MAS spectroscopy. The supercoiled (sc) isoform of pVAX1-LacZ and pVAX1-G4 was isolated from a native sample. Also, the recovery and isolation of the plasmid isoforms from Escherichia coli lysate samples were achieved using an ionic gradient with different concentrations of NaCl in 10 mM Tris-HCl (pH 7.4). The retention times of different DNA/single strand sequences that can form G4, such as, c-MYC, c-kit1, c-kit2, tetrameric, telomeric (23AG), thrombin aptamer (TBA) and 58Sγ3 in this support were evaluated. Our experimental results suggest that the support exhibits selectivity for parallel c-MYC and c-kit1 G4s. In vitro transcription was performed using purified sc pVAX1-G4 and pPH600 to induce G4 formation and circular dichroism (CD) analysis confirmed that both transcripts adopt a parallel G4 topology.

Marcelino, P, Marinho SH, Campos MC, Neves AR, Real C, Fontes FS, Carvalho A, Feio G, Martins BMF, Corvo LM.  2017.  Therapeutic activity of superoxide dismutase-containing enzymosomes on rat liver ischaemia-reperfusion injury followed by magnetic resonance microscopy. European Journal of Pharmaceutical Sciences. 109:464-471. AbstractWebsite

Liver ischaemia-reperfusion injury (IRI) may occur during hepatic surgery and is unavoidable in liver transplantation. Superoxide dismutase enzymosomes (SOD-enzymosomes), liposomes where SOD is at the liposomal surface expressing enzymatic activity in intact form without the need of liposomal disruption, were developed with the aim of having a better insight into its antioxidant therapeutic outcome in IRI. We also aimed at validating magnetic resonance microscopy (MRM) at 7 T as a tool to follow IRI. SOD-enzymosomes were characterized and tested in a rat ischaemia-reperfusion model and the therapeutic outcome was compared with conventional long circulating SOD liposomes and free SOD using biochemical liver injury biomarkers, histology and MRM. MRM results correlated with those obtained using classical biochemical biomarkers of liver injury and liver histology. Moreover, MRM images suggested that the therapeutic efficacy of both SOD liposomal formulations used was related to prevention of peripheral biliary ductular damage and disrupted vascular architecture. Therefore, MRM at 7 T is a useful technique to follow IRI. SOD-enzymosomes were more effective than conventional liposomes in reducing liver ischaemia-reperfusion injury and this may be due to a short therapeutic window.

Peixoto, D, Figueiredo M, Gawande MB, Corvo MC, Vanhoenacker G, Afonso CAM, Ferreira LM, Branco PS.  2017.  Developments in the Reactivity of 2-Methylimidazolium Salts. The Journal of organic chemistry. 82:6232–6241., Number 12: American Chemical Society Abstract
n/a
2016
Echeverria, C, Fernandes SN, Almeida PL, Godinho MH.  2016.  Effect of cellulose nanocrystals in a cellulosic liquid crystal behaviour under low shear (regime I): Structure and molecular dynamics. European Polymer Journal. 84:675-684. AbstractWebsite

In the field of cellulosic liquid crystals, attempts to establish the relationship between structure/properties have been developed. Above a critical concentration in an aqueous solution, hydroxypropylcellulose self-assembles in order to form cholesteric liquid crystal phases (LC-HPC). In this work we aim to understand how the incorporation of a low content of cellulose nanocrystals (CNC) within LC-HPC/H2O (50 wt%), could influence the behaviour of the system when subjected to low shear rates, where the cholesteric phase still persists. The analysis of the deuterium spectrum and the T2 (transversal relaxation) values confirm that the mobility of LC-HPC at low shear rates is restricted due to CNC, and consequently so is the flow of the cholesteric polydomains. These effects are more evident in the LC-HPC sample containing 2 wt% of CNC; besides needing more strain units to induce some degree of order, the achieved degree of order is recovered faster when compared to the reference sample.

Fundo, JF, Galvis-Sanchez A, Madureira AR, Carvalho A, Feio G, Silva CLM, Quintas MAC.  2016.  NMR water transverse relaxation time approach to understand storage stability of fresh-cut ‘Rocha’pear. LWT-Food Science and Technology. 74:280-285. AbstractWebsite

Fresh-cut fruit is an important segment in fruit market due to the increasing demand for healthy/convenient foods. However, processing promotes a decrease in fruits stability with faster physiological and microbiological deteriorations. Food stability is strongly attributed to its molecular dynamics and “water availability”. Understanding changes in water location/mobility is of utmost importance, since water dynamics profoundly influences physic-chemical and microbiological quality of foods. Nuclear magnetic resonance spectroscopy (NMR) is a methodology used to study the food constituents' molecular dynamics.

The aim of this study is to use NMR to evaluate changes in water mobility that occurred in fresh-cut pear tissues during storage, by measuring the transverse relaxation time (T2) parameter.

Results showed the existence of three water classes in the cells after processing, with T2 values of 10 ms, 187 ms and 3s for cellular wall, cytoplasm and vacuole, respectively. Also, the obtained results demonstrated that T2 was affected by processing and storage. Moreover, a relationship between T2, microstructure and the quality parameters was established. T2, maximum value increased with pear hardness as well as water activity. On the contrary, a decrease in total colour difference (TCD) was found with T2.

Results demonstrate the usefulness of the application of NMR relaxometry in food studies.

2015
Ferreira, S, Carvalho J, Valente JF, Corvo M, Cabrita EJ, Sousa F, Queiroz JA, Cruz C.  2015.  Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification. J Chromatogr B Analyt Technol Biomed Life Sci. 1006:47-58. AbstractWebsite

The developments in the use of plasmid DNA (pDNA) in gene therapy and vaccines have motivated the search and improvement of optimized purification processes. In this context, dipeptides l-tyrosine-l-tyrosine and l-tyrosine-l-arginine are synthetized to explore their application as affinity ligands for supercoiled (sc) plasmid DNA (pDNA) purification. The synthesis is based on the protection of N-Boc-l-tyrosine, followed by condensation with l-tyrosine or l-arginine methyl esters in the presence of dicyclohexylcarbodiimide (DCC), which after hydrolysis and acidification give the afforded dipeptides. The supports are then obtained by coupling l-tyrosine, l-tyrosine-l-tyrosine and l-tyrosine-l-arginine to epoxy-activated Sepharose and are characterized by high resolution magic angle spinning (HR-MAS) NMR and Fourier transform infrared spectroscopy (FTIR). Surface plasmon resonance (SPR) biosensor is used to establish the promising ligand to be used in the chromatographic experiments and ascertain experimental conditions. Sc isoform showed the highest affinity to the dipeptides, followed by linear (ln) pDNA, being the open circular (oc) the one that promoted the lowest affinity to l-tyrosine-l-arginine. Saturation transfer difference (STD)-NMR experiments show that the interaction is mainly hydrophobic with the majority of the 5'-mononucleotides, except for 5'-GMP with l-tyrosine-l-arginine Sepharose that is mainly electrostatic. The support l-tyrosine Sepharose used in chromatographic experiments promotes the separation of native pVAX1-LacZ and pcDNA3-FLAG-p53 samples (oc+sc) by decreasing the salt concentration. The results suggest that it is possible to purify different plasmids with the l-tyrosine Sepharose, with slight adjustments in the gradient conditions.

Echeverria, C, Almeida PL, Feio G, Figueirinhas JL, Godinho MH.  2015.  A cellulosic liquid crystal pool for cellulose nanocrystals: Structure and molecular dynamics at high shear rates. European Polymer Journal. 72:72-81. AbstractWebsite

Cellulose and its derivatives, such as hydroxypropylcellulose (HPC) have been studied for a long time but they are still not well understood particularly in liquid crystalline solutions. These systems can be at the origin of networks with properties similar to liquid crystalline (LC) elastomers. The films produced from LC solutions can be manipulated by the action of moisture allowing for instance the development of a soft motor (Geng et al., 2013) driven by humidity. Cellulose nanocrystals (CNC), which combine cellulose properties with the specific characteristics of nanoscale materials, have been mainly studied for their potential as a reinforcing agent. Suspensions of CNC can also self-order originating a liquid-crystalline chiral nematic phases. Considering the liquid crystalline features that both LC-HPC and CNC can acquire, we prepared LC-HPC/CNC solutions with different CNC contents (1,2 and 5 wt.%). The effect of the CNC into the LC-HPC matrix was determined by coupling rheology and NMR spectroscopy - Rheo-NMR a technique tailored to analyse orientational order in sheared systems. (C) 2015 Elsevier Ltd. All rights reserved.

Palma, SI, Carvalho A, Silva J, Martins P, Marciello M, Fernandes AR, Del Puerto Morales M, Roque AC.  2015.  Covalent coupling of gum arabic onto superparamagnetic iron oxide nanoparticles for MRI cell labeling: physicochemical and in vitro characterization. Contrast Media Mol Imaging. 10:320-8., Number 4 AbstractWebsite

Gum arabic (GA) is a hydrophilic composite polysaccharide derived from exudates of Acacia senegal and Acacia seyal trees. It is biocompatible, possesses emulsifying and stabilizing properties and has been explored as coating agent of nanomaterials for biomedical applications, namely magnetic nanoparticles (MNPs). Previous studies focused on the adsorption of GA onto MNPs produced by co-precipitation methods. In this work, MNPs produced by a thermal decomposition method, known to produce uniform particles with better crystalline properties, were used for the covalent coupling of GA through its free amine groups, which increases the stability of the coating layer. The MNPs were produced by thermal decomposition of Fe(acac)3 in organic solvent and, after ligand-exchange with meso-2,3-dimercaptosuccinic acid (DMSA), GA coating was achieved by the establishment of a covalent bond between DMSA and GA moieties. Clusters of several magnetic cores entrapped in a shell of GA were obtained, with good colloidal stability and promising magnetic relaxation properties (r2 /r1 ratio of 350). HCT116 colorectal carcinoma cell line was used for in vitro cytotoxicity evaluation and cell-labeling efficiency studies. We show that, upon administration at the respective IC50 , GA coating enhances MNP cellular uptake by 19 times compared to particles bearing only DMSA moieties. Accordingly, in vitro MR images of cells incubated with increasing concentrations of GA-coated MNP present dose-dependent contrast enhancement. The obtained results suggest that the GA magnetic nanosystem could be used as a MRI contrast agent for cell-labeling applications.

Ferreira, S, Carvalho J, Valente JFA, Corvo MC, Cabrita EJ, Sousa F, Queiroz JA, Cruz C.  2015.  Affinity analysis and application of dipeptides derived from l-tyrosine in plasmid purification. Journal of Chromatography B. 1006:47–58.: Elsevier Abstract
n/a
Fundo, JF, Amaro AL, Madureira AR, Carvalho A, Feio G, Silva CLM, Quintas MAC.  2015.  Fresh-cut melon quality during storage: An NMR study of water transverse relaxation time. Journal of Food Engineering. 167:71-76. AbstractWebsite

Molecular mobility is a fundamental parameter which reflects the dynamic properties of food components and contributes to food degradation reactions comprehension. Fresh-cut fruits have become an important food market segment. However, processing of fruits promotes faster its physiological deterioration, biochemical changes and microbial degradation. The purpose of this work was to use NMR methodology as a tool to evaluate fresh-cut fruit quality, during storage at refrigerated conditions. The fresh-cut melon transverse relaxation time (T-2) was measured for a period of 7 days of storage at 5 degrees C. The relationship between the obtained values, microstructure and quality parameters was investigated. In general, results show the existence of one class of water fluidity in the system, the one present in cells after processing. T-2, a measure of this fluidity, is affected by the processing and storage time. Also, it is possible to find a close relationships between T-2 and quality parameters of total colour difference (TCD), firmness and a(w). As T-2 increases TCD also increases, while firmness and aw decrease. These results highlight the usefulness of NMR methodology application in food science. (C) 2015 Elsevier Ltd. All rights reserved.

Azevedo, G, Domingues B, Abreu H, Sousa-Pinto I, Feio G, Hilliou L.  2015.  Impact of cultivation of Mastocarpus stellatus in IMTA on the seaweeds chemistry and hybrid carrageenan properties. Carbohydr Polym. 116:140-8. AbstractWebsite

The biomass yield potential of Mastocarpus stellatus, a commercially attractive carrageenophyte for foods and pharmaceutics, was investigated by cultivating the seaweeds in the nutrient-rich outflow of a commercial fish farm. Results from two consecutive 4 weeks experiments indicate that the cultivation of this seaweed produces a mean biomass of 21 to 40.6 gDW m(-2) day(-1) depending on the time of the experiment. DRIFT and CP-MAS NMR analyses of seaweeds indicate that cultivation during May affected quantitatively the seaweeds chemistry, and thus the chemical and gelling properties of native extracts of kappa/iota-hybrid carrageenan (KI). Overall, algal growth leads to the production of more sulphated KI, the percentage increase varying between 27% and 44% for the two experiments. However, alkali treatment of seaweeds before extraction reduces the variations in gelling properties of KI induced by the algal growth. This study demonstrates the capacity of growing M. stellatus in an integrated multi-trophic aquaculture system for the sustainable production of high value polysaccharides.

Fundo, JF, Carvalho A, Feio G, Silva CLM, Quintas MAC.  2015.  Relationship between molecular mobility, microstructure and functional properties in chitosan/glycerol films. Innovative Food Science & Emerging Technologies. 28:81-85. AbstractWebsite

Foods are partially crystalline partially amorphous systems. Edible films are considered good models for food systems due to their interesting physical properties, quite straightforward matrices, and easy reproduction. Chitosan is a semicrystalline biopolymer, biocompatible, biodegradable, with antimicrobial activity and filmogenic properties, thoroughly used in edible films' studies. This work aims to investigate the relationship between chitosan films' molecular relaxation time, their microstructure (crystallinity) and functional properties. Analyses were carried out using data on chitosan/glycerol films prepared with different polymer/plasticisant concentrations. Results demonstrate that there is a relationship between macroscopic properties and water and glycerol relaxation times. Moreover, results show that while water is free in the matrix, glycerol is linked to the chitosan polymeric chains, decreasing intermolecular attractions and increasing free volume, thus facilitating molecular migration. Also the data analysis reveals the usefulness of NMR and molecular mobility studies in the matrix for characterisation and development of polymeric structures. Industrial relevance: NMR spectroscopy is currently one of the key methods for food characterisation. Foodstuff is a complex matrix including many different compounds with different chemical structures, concentrations, solubility, properties and nutritional values. From a fundamental perspective, foods are mainly edible and digestible biopolymers that are partially crystalline/partially amorphous and thus edible films, specifically chitosan/glycerol films can be very interesting food model systems for mobility and microstructure studies. Studies on water and solids' mobility and thermo-mechanical properties in food systems (real or model systems),are fundamental to fully attain food physical properties and stability. These studies may be extremely useful for food product and process design, safety and sensorial attributes and also for better understanding and predicting, for example, food storage stability conditions. (C) 2015 Elsevier Ltd. All rights reserved.

Echeverria, C, Almeida PL, Feio G, Figueirinhas JL, Rey AD, Godinho MH.  2015.  Rheo-NMR study of water-based cellulose liquid crystal system at high shear rates. Polymer. 65:18-25. AbstractWebsite

Since long ago cellulosic lyotropic liquid crystals were thought as potential materials to produce fibers competitive with spidersilk or Kevlar, yet the processing of high modulus materials from cellulose-based precursors was hampered by their complex rheological behavior. In this work, by using the Rheo-NMR technique, which combines deuterium NMR with rheology, we investigate the high shear rate regimes that may be of interest to the industrial processing of these materials. Whereas the low shear rate regimes were already investigated by this technique in different works [1-4], the high shear rates range is still lacking a detailed study. This work focuses on the orientational order in the system both under shear and subsequent relaxation process arising after shear cessation through the analysis of deuterium spectra from the deuterated solvent water. At the analyzed shear rates the cholesteric order is suppressed and a flow-aligned nematic is observed which for the higher shear rates develops after certain time periodic perturbations that transiently annihilate the order in the system. During relaxation the flow aligned nematic starts losing order due to the onset of the cholesteric helices leading to a period of very low order where cholesteric helices with different orientations are forming from the aligned nematic, followed in the final stage by an increase in order at long relaxation times corresponding to the development of aligned cholesteric domains. This study sheds light on the complex rheological behavior of chiral nematic cellulose-based systems and opens ways to improve its processing. (C) 2015 Elsevier Ltd. All rights reserved.

Carvalho, A, Sebastiao PJ, Fonseca I, Matos J, Goncalves MC.  2015.  Silica and silica organically modified nanoparticles: Water dynamics in complex systems. Microporous and Mesoporous Materials. 217:102-108. AbstractWebsite

Four silica-based porous nanosystems were synthesized with different organic substitutes and the molecular dynamics of water in these constrained environment was investigated. The nanosystems were silica and three organic modified silica nanoparticles (NP) with diameters in the range 80-300 nm with different porous dimensions, surface areas, and surface properties (e.g. hydrophilicity/hydrophobicity). Molecular dynamics was studied by pulsed field gradient NMR and by proton spin-lattice relaxation in a broad range of Larmor frequencies. A coherent analysis of the diffusion coefficients and spin-lattice relaxation data is presented taking into account a relaxation model associated to water molecular dynamics in close contact with NP surfaces. From our results it was possible to access the details of the water molecular movements in the nanosystems and to single out two water populations presenting distinct molecular dynamics. Characteristic distances for water rotations mediated by translational diffusion were estimated in consistency with the NP's dimensions and pores sizes obtained by TEM and BET experimental techniques. This knowledge has both fundamental and practical relevance since these NP have applications in nanomedicine, not only in therapy but also in diagnostic procedures and more recently in theranostic. (C) 2015 Elsevier Inc. All rights reserved.

Palma, SI, Rodrigues CA, Carvalho A, Morales Mdel P, Freitas F, Fernandes AR, Cabral JM, Roque AC.  2015.  A value-added exopolysaccharide as a coating agent for MRI nanoprobes. Nanoscale. 7:14272-83., Number 34 AbstractWebsite

Fucopol, a fucose-containing exopolysaccharide (EPS) produced by the bacterium Enterobacter A47 DSM 23139 using glycerol as a carbon source, was employed as a new coating material for iron oxide magnetic nanoparticles (MNPs). The coated particles were assessed as nanoprobes for cell labeling by Magnetic Resonance Imaging (MRI). The MNPs were synthesized by a thermal decomposition method and transferred to an aqueous medium by a ligand-exchange reaction with meso-2,3-dimercaptosuccinic acid (DMSA). Covalent binding of EPS to DMSA-stabilized nanoparticles (MNP-DMSA) resulted in a hybrid magnetic-biopolymeric nanosystem (MNP-DMSA-EPS) with a hydrodynamic size of 170 nm, a negative surface charge under physiological conditions and transverse to longitudinal relaxivity ratio, r2/r1, of 148. In vitro studies with two human cell lines (colorectal carcinoma - HCT116 - and neural stem/progenitor cells - ReNcell VM) showed that EPS promotes internalization of nanoparticles in both cell lines. In vitro MRI cell phantoms showed a superior performance of MNP-DMSA-EPS in ReNcell VM, for which the iron dose-dependent MRI signal drop was obtained at relatively low iron concentrations (12-20 mug Fe per ml) and short incubation times. Furthermore, ReNcell VM multipotency was not affected by culture in the presence of MNP-DMSA or MNP-DMSA-EPS for 14 days. Our study suggests that Fucopol-coated MNPs represent useful cell labeling nanoprobes for MRI.

2014
Carvalho, A, Martins MB, Corvo ML, Feio G.  2014.  Enhanced contrast efficiency in MRI by PEGylated magnetoliposomes loaded with PEGylated SPION: effect of SPION coating and micro-environment. Mater Sci Eng C Mater Biol Appl. 43:521-6. AbstractWebsite

Magnetic core coatings modify the efficiency of nanoparticles used as contrast agents for MRI. In studies of these phenomena, care should be given to take into account possible effects of the specific micro-environment where coated nanoparticles are embedded. In the present work, the longitudinal and transverse relaxivities of superparamagnetic iron oxide nanoparticles stabilized with short-chain polyethylene glycol molecules (PEGylated SPIONs) were measured in a 7T magnetic field. PEGylated SPIONs with two different diameters (5 and 10nm) were studied. Two different PEGylated magnetoliposomes having liposome bilayer membranes composed of egg-phosphatidylcholine, cholesterol and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy PEG-2000] were also studied for their relaxivities, after being loaded with the PEGylated SPION of 5 or 10nm. This type of liposomes is known to have long residence time in bloodstream that leads to an attractive option for therapeutic applications. The influence of the magnetic core coating on the efficiency of the nanosystem as a negative contrast agent for MRI was then compared to the cumulative effect of the coating plus the specific micro-environment components. As a result, it was found that the PEGylated magnetoliposomes present a 4-fold higher efficiency as negative contrast agents for MRI than the PEGylated SPION.

Fundo, JF, Fernandes R, Almeida PM, Carvalho A, Feio G, Silva CL, Quintas MA.  2014.  Molecular mobility, composition and structure analysis in glycerol plasticised chitosan films. Food Chem. 144:2-8. AbstractWebsite

This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain.

Martins, MB, Corvo ML, Marcelino P, Marinho HS, Feio G, Carvalho A.  2014.  New long circulating magnetoliposomes as contrast agents for detection of ischemia-reperfusion injuries by MRI. Nanomedicine. 10:207-14., Number 1 AbstractWebsite

New long circulating magnetoliposomes coated with polyethylene glycol (PEG), and loaded with PEG-coated 10nm superparamagnetic iron oxide nanoparticles (SPION), were developed. The magnetoliposomes relaxivities r1, r2 measured in a magnetic field of 7 T showed a minor effect on T1, but a major effect on T2. These nanosystems were used as a negative contrast agent for MRI in a nonclinical study to visualize, in a rat model of liver ischemia, ischemia-reperfusion injuries. Magnetic resonance micro-images (MRM) at 7 T were obtained for rat liver with and without magnetoliposomes administration and analyzed in comparison with liver biomarkers and histological results. These new long circulating magnetoliposomes enhanced the detection of lesions indicating their potential use as efficient MRI negative contrast agent for the detection of liver ischemia-reperfusion injuries. FROM THE CLINICAL EDITOR: This paper describes the generation of PEGylated magnetoliposomes and demonstrates their feasibility as negative contrast agents in a liver ischemia-reperfusion rat model.

Nogueira, LS, Ribeiro S, Granadeiro CM, Pereira E, Feio G, Cunha-Silva L, Balula SS.  2014.  Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process. Dalton Trans. 43:9518-28., Number 25 AbstractWebsite

A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

Cachitas, H, Sebastiao PJ, Feio G, Chavez FV.  2014.  Proton NMR relaxation study of molecular dynamics of chromonic liquid crystal Edicol Sunset Yellow. Liquid Crystals. 41:1080-1089., Number 8 AbstractWebsite

Proton nuclear magnetic resonance (H-1 NMR) relaxometry, over about five decades in Larmor frequency, and pulsed field gradient NMR were used to study the molecular dynamics in the chromonic nematic and isotropic phases of stacked molecules of the binary mixture composed by Edicol Sunset Yellow (ESY) and deuterated water. Our results evidence that in both phases collective motions are responsible for the spin-lattice relaxation dispersion in the Larmor frequency range below 1 MHz. In the nematic phase, the collective motion are attributed to columnar undulations within the stacked molecules, while, in the isotropic phase, the results are explained by local order fluctuations due to the formation of the stacks. The high frequency dispersion was explained by individual molecular motions like rotations around and perpendicular to the stack axis, and also self-diffusion.

2013
Daniel, CI, Chavez FV, Feio G, Portugal CA, Crespo JG, Sebastiao PJ.  2013.  1H NMR relaxometry, viscometry, and PFG NMR studies of magnetic and nonmagnetic ionic liquids. J Phys Chem B. 117:11877-84., Number 39 AbstractWebsite

A study is presented of the molecular dynamics and of the viscosity in pure [Aliquat][Cl] ionic liquid and in a mixture of [Aliquat][Cl] with 1% (v/v) of [Aliquat][FeCl4]. The (1)H spin-lattice relaxation rate, R1, was measured by NMR relaxometry between 8 and 300 MHz. In addition, the translation self-diffusion, D, was measured by pulse field gradient NMR. The ILs' viscosity was measured as a function of an applied magnetic field, B, and it was found that the IL mixture's viscosity decreased with increasing B, whereas the [Aliquat][Cl] viscosity is independent of B. All experimental results were analyzed taking into account the viscosity's magnetic field dependence, assuming a modified Stokes-Einstein diffusion/viscosity relation. The main difference between the relaxation mechanisms responsible for R1 in the two IL systems is related to the additional paramagnetic relaxation contribution associated with the (1)H spins-[FeCl4] paramagnetic moments' interactions. Cross-relaxation cusps in the R1 dispersion, associated with (35)Cl and (1)H nuclear spins in the IL systems, were detected. The R1 model considered was successfully fitted to the experimental results, and it was possible to estimate the value of D at zero field in the case of the IL mixture which was consistent with the values of D measured at 7 and 14.1 T and with the magnetic field dependence estimated from the viscosity measurements. It was observed that a small concentration of [Aliquat][FeCl4] in the [Aliquat][Cl] was enough to produce a "superparamagnetic"-like effect and to change the IL mixture's molecular dynamics and viscosity and to allow for their control with an external magnetic field.

Neves, CS, Granadeiro CM, Cunha-Silva L, Ananias D, Gago S, Feio G, Carvalho PA, Eaton P, Balula SS, Pereira E.  2013.  Europium Polyoxometalates Encapsulated in Silica Nanoparticles Characterization and Photoluminescence Studies. European Journal of Inorganic Chemistry. :2877-2886., Number 16 AbstractWebsite

The incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW11)x (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, 31P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW11)x@SiO2 nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides.

Oliveira, FS, Pereiro AB, Araujo JM, Bernardes CE, Canongia Lopes JN, Todorovic S, Feio G, Almeida PL, Rebelo LP, Marrucho IM.  2013.  High ionicity ionic liquids (HIILs): comparing the effect of ethylsulfonate and ethylsulfate anions. Phys Chem Chem Phys. 15:18138-47., Number 41 AbstractWebsite

The subject of ionicity has been extensively discussed in the last decade, due to the importance of understanding the thermodynamic and thermophysical behaviour of ionic liquids. In our previous work, we established that ionic liquids' ionicity could be improved by the dissolution of simple inorganic salts in their milieu. In this work, a comparison between the thermophysical properties of two binary systems of ionic liquid + inorganic salt is presented. The effect of the ammonium thiocyanate salt on the ionicity of two similar ionic liquids, 1-ethyl-3-methylimidazolium ethylsulfonate and ethylsulfate, is investigated in terms of the related thermophysical properties, such as density, viscosity and ionic conductivity in the temperature range 298.15-323.15 K. In addition, spectroscopic (NMR and Raman) and molecular dynamic studies were conducted in order to better understand the interactions that occur at a molecular level. The obtained results reveal that although the two anions of the ionic liquid exhibit similar chemical structures, the presence of one additional oxygen in the ethylsulfate anion has a major impact on the thermophysical properties of the studied systems.

Carvalho, A, Goncalves MC, Martins MB, Meixedo D, Feio G.  2013.  Relaxivities of magnetoliposomes: the effect of cholesterol. Magn Reson Imaging. 31:610-2., Number 4 AbstractWebsite

We present relaxivities measurements for both the longitudinal and transverse relaxations of two types of liposomes loaded with ultra small superparamagnetic iron oxide nanoparticles. The magnetoliposome systems presented are soybean phosphatidylcholine liposomes, with and without cholesterol, in the phospholipid bilayer with different molar ratios lipid:cholesterol. In fact, cholesterol is needed to obtain stable liposomes for intravenous administration. The longitudinal and transverse relaxivities were measured with a NMR spectrometer in a 7T magnetic field. For the studied concentrations, the liposomes show a negligible effect on the longitudinal relaxation time T1 of the medium, but they are very efficient on decreasing the transverse relaxation time T2, the behaviour one expects for a negative CA. We observed a lower transverse relaxivity for the magnetoliposome nanosystem with cholesterol, which strongly decreases with the cholesterol content in the liposome bilayer.

Faria, MR, Cruz MM, Goncalves MC, Carvalho A, Feio G, Martins MB.  2013.  Synthesis and characterization of magnetoliposomes for MRI contrast enhancement. Int J Pharm. 446:183-90., Number 1-2 AbstractWebsite

This work assesses the characteristics of magnetoliposomes of soybean phosphatidylcholine (SPC):cholesterol (Chol) loaded with superparamagnetic iron oxide nanoparticles (IONPs) stabilized with tetramethylammonium hydroxide (TMAOH) and their capacity to enhance magnetic resonance imaging (MRI) contrast. Magnetoliposomes of SPC were used for comparative studies. IONPs and magnetoliposomes were characterized using transmission electron microscopy, dynamic light scattering, SQUID magnetometry, FTIR and MRI. The saturation magnetization at 10K was  0.06 Am(2)/kg for SPC:Chol magnetoliposomes with 7 g iron oxide/mol of lipid and  0.05 Am(2)/kg for SPC magnetoliposomes with 21 g iron oxide/mol of lipid. As these values are associated with the number of incorporated magnetic IONPs, the saturation magnetization is 1.2 times higher for magnetoliposomes of SPC:Chol as compared with magnetoliposomes of SPC alone. The behavior of temperature dependence in both cases is typical of superparamagnetic particles. FTIR spectra evidence the increase of magnetoliposome membrane ordering with the presence of Chol. Principal component analysis (PCA) applied to FTIR spectra evidenced a clear distinction between scores for SPC:Chol, and SPC magnetoliposomes and for SPC empty liposomes. PCA applied to FTIR data differentiate magnetoliposomes from empty liposomes. MR images of aqueous phantoms obtained with and without magnetoliposomes, clearly evidence their effect on T2 image weighting.

Casimiro, MH, Corvo M, Ramos AM, Cabrita EJ, Ramos AM, Ferreira LM.  2013.  Synthesis and characterization of novel $\gamma$-induced porous PHEMA–IL composites. Materials Chemistry and Physics. 138:11–16., Number 1: Elsevier Abstract
n/a
Casimiro, MH, Corvo M, Ramos AM, Cabrita EJ, Ramos AM, Ferreira LM.  2013.  Synthesis and characterization of novel gamma-induced porous PHEMA-IL composites. Materials Chemistry and Physics. 138:11-16., Number 1 AbstractWebsite

A novel porous polymer-ionic liquid composite with poly(2-hydroxyethyl methacrylate) (PHEMA) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) has been synthesized by gamma-irradiation without heat or chemical initiators. The products can be reversibly converted into organogels. The composites are potential candidates for electrochemical applications. The use of gamma-radiation can be a simple and versatile alternative way to obtain these materials. (C) 2012 Elsevier B.V. All rights reserved.

Geng, Y, Almeida PL, Feio GM, Figueirinhas JL, Godinho MH.  2013.  Water-Based Cellulose Liquid Crystal System Investigated by Rheo-NMR. Macromolecules. 46:4296-4302., Number 11 AbstractWebsite

Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.

2010
Lehmann, M, Kohn C, Figueirinhas JL, Feio G, Cruz C, Dong RY.  2010.  Biaxial nematic mesophases from shape-persistent mesogens with a fluorenone bending unit. Chemistry. 16:8275-9., Number 28 AbstractWebsite
n/a
Kundu, S, Feio G, Pinto LFV, Almeida PL, Figueirinhas JL, Godinho MH.  2010.  Deuterium NMR Study of Orientational Order in Cellulosic Network Microfibers. Macromolecules. 43:5749-5755., Number 13 AbstractWebsite

Deuterium NMR was used to investigate the orientational order in a composite cellulosic formed by liquid crystalline acetoxypropylcellulose (A PC) and demented nematic 4'-penty1-4-cyanobiphenyl (5CB-4 alpha d(2)) with the per centage of 85% A PC by weight Three forms of the composite including electro spun microfibers, thin film and bulk samples were analyzed The NMR results initially suggest two distinct scenarios, one whet e the 503-alpha d(2), is confined to small droplets with dimensions smaller than the magnetic coherence length and the other where the 503-alpha d(2) molecules arc aligned with the A PC network chains Polarized optical microscopy (POW from thin film samples along with all the NMR results show the presence of 5CB-alpha d(2) droplets in the composite systems with a nematic wetting layer at the APC-5CB-alpha d(2) interface that experiences and order disorder transition driven by the polymer network N-I transition The characterization of the APC network I-N transition shows a pronounced subcritical behavior within a heterogeneity scenario

Figueirinhas, JL, Feio G, Cruz C, Lehmann M, Kohn C, Dong RY.  2010.  Nuclear magnetic resonance spectroscopic investigations of phase biaxiality in the nematic glass of a shape-persistent V-shaped mesogen. J Chem Phys. 133:174509., Number 17 AbstractWebsite

Deuterium and carbon-13 NMR spectroscopy were used to study both the high temperature uniaxial nematic and the low temperature biaxial nematic glass of a shape-persistent V-shaped mesogen. It was found that biaxial ordering determined in the domains of the latter has symmetry lower than D(2h) and is compatible with C(2h) symmetry or lower. In particular, elements of the ordering matrix including biaxial phase order parameters were determined from (2)H NMR at two temperatures, one just below the glass transition, and the other deep inside the biaxial glass, which allowed for the characterization of the dominant molecular motions at these temperatures. (13)C NMR magic angle spinning sideband patterns, collected both in the high temperature nematic phase and in the nematic glass, clearly show the difference between them in terms of the phase symmetry.

2009
Figueirinhas, JL, Cruz C, Feio G, Mehl GH.  2009.  Collective Modes and Biaxial Ordering Observed by Deuterium NMR in the Nematic Phases of an Organosiloxane Tetrapode. Molecular Crystals and Liquid Crystals. 510:158-174. AbstractWebsite

Calculations of deuterium NMR spectra were performed using a model of slow motions based on the collective modes present in liquid crystalline systems and evaluated within the Landau de Gennes free energy expansion on the order parameter tensor. Simulations obtained with this model are applied to the case of deuterium NMR spectra collected in static and rotating samples of organosiloxane tetrapodes exhibiting uniaxial and biaxial nematic phases. The analysis of the slow motions influence on deuterium NMR spectra shows that molecular motions within a time-scale of the order of magnitude of NMR observation times are particularly effective on modulating the NMR line-shape in the case of the liquid crystalline system investigated.

Feio, G, Figueirinhas JL, Tajbakhsh AR, Terentjev EM.  2009.  Deuterium NMR study of mobility and fluctuations in nematic and isotropic elastomers. J Chem Phys. 131:074903., Number 7 AbstractWebsite

Orientational ordering in polydomain nematic and isotropic elastomers with identical polysiloxane backbone and different deuterium-labeled side groups is studied by D-NMR. In the nematic elastomer the orientational order parameter grows in a critical fashion on crossing the I-N transition implying a continuous phase transition driven by critical fluctuations of local director. The orientational (nematic) ordering occurs on the background of the polymer dynamics exhibited by the backbone, which is similar in the nematic and the analogous isotropic elastomers. The temperature dependence of NMR linewidths is compatible with a Vogel-Fulcher glassy dynamics.

2008
Cruz, C, Figueirinhas JL, Filip D, Feio G, Ribeiro AC, Frere Y, Meyer T, Mehl GH.  2008.  Biaxial nematic order and phase behavior studies in an organosiloxane tetrapode using complementary deuterium NMR experiments. Phys Rev E Stat Nonlin Soft Matter Phys. 78:051702., Number 5 Pt 1 AbstractWebsite

The biaxial nematic phase was recently observed in different thermotropic liquid crystals, namely bent-core compounds, side-chain polymers, bent-core dimers, and organosiloxane tetrapodes. In this work, a series of experiments with a nematic organosiloxane tetrapode where nuclear magnetic resonance (NMR) spectra are collected while the sample is continuously rotating around an axis perpendicular to the magnetic field, are discussed in conjunction with the analysis of a deuterium NMR experiment on the same system reported earlier. The sample used is a mixture of a deuterated probe with the tetrapode. The mixture exhibits a nematic range between -40 degrees C and 37 degrees C. The results of the two independent, but complementary deuterium NMR experiments confirm the existence of a biaxial nematic phase for temperatures below 0 degrees C with high values of the asymmetry parameter at low temperatures. The presence of slow movements of the tetrapode mesogenic units in the low-temperature regime could also be detected through the analysis of the NMR spectra. Simulations indicate that these movements are mainly slow molecular reorientations of the mesogenic units associated with the presence of collective modes in the nematic phases of this compound. In the case of tetrapodes, recent investigations attribute the origin of biaxiality to the hindering of reorientations of the laterally attached mesogenic units which constitute the tetrapode. This study relates the molecular movements with the nematic biaxial ordering of the system.

Feio, G, Figueirinhas JL, Tajbakhsh AR, Terentjev EM.  2008.  Critical fluctuations and random-anisotropy glass transition in nematic elastomers. Physical Review B. 78, Number 2 AbstractWebsite

We carry out a detailed deuterium nuclear magnetic resonance (NMR) study of local nematic ordering in polydomain nematic elastomers. This system has a close analogy to the random-anisotropy spin glass. We find that, in spite of the quadrupolar nematic symmetry in three dimensions requiring a first-order transition, the order parameter in the quenched "nematic glass" emerges via a continuous phase transition. In addition to this remarkable effect, by a careful analysis of the NMR line shape, we deduce that the local director fluctuations grow in a critical manner around the transition point. This could become an essential experimental evidence for the quenched disorder changing the order of discontinuous transition.

Cardoso, M, Figueirinhas JL, Cruz C, Van-Quynh A, Ribeiro AC, Feio G, Apreutesei D, Mehl GH.  2008.  Deuterium NMR Investigation of the Influence of Molecular Structure on the Biaxial Ordering of Organosiloxane Tetrapodes Nematic Phase. Molecular Crystals and Liquid Crystals. 495:700-+. AbstractWebsite

In order to contribute to the understanding of the origin of biaxial nematic ordering in tetrapodes, a deuterium NMR study was performed on mixtures of monomers from organosiloxane tetrapodes with a deuterated nematic probe. Contrary to the tetrapode system previously studied, which exhibits a biaxial nematic phase, the results for monomers are compatible, within the experimental error, with uniaxial nematic ordering in the whole nematic range. The data are in agreement with the conjecture that the nematic biaxial behaviour is related to hindering of the mesogenic units' rotational movements, arising from interdigitation and connection to the central silicon core.

2005
Figueirinhas, JL, Cruz C, Filip D, Feio G, Ribeiro AC, Frere Y, Meyer T, Mehl GH.  2005.  Deuterium NMR investigation of the biaxial nematic phase in an organosiloxane tetrapode. Phys Rev Lett. 94:107802., Number 10 AbstractWebsite

Deuterium NMR is used to examine the molecular order exhibited by an organosiloxane tetrapode giving the first experimental evidence, using a bulk sample, for the existence of a biaxial nematic phase in this type of compounds. The temperature dependence of the averaged quadrupolar coupling constant and asymmetry parameter was determined in the compound's nematic phase. Two distinct regimes could be identified, one with a vanishing asymmetry parameter corresponding to a uniaxial nematic phase and another with a significant temperature dependent asymmetry parameter, corresponding to a biaxial nematic phase. The high values obtained for the asymmetry parameter at the lower end of the nematic range are well above experimental error and constitute a definite proof of the biaxial nature of the nematic phase exhibited by the studied compound for those temperatures.

2004
Alexandre, J, Feio G, Marvao MR, Figueiredo J.  2004.  Correlation between high power proton T(2) NMR relaxation and macroscopic viscoelastic properties. Advanced Materials Forum Ii. 455-456(R. Martins, E. Fortunato, Ferreira, I., Dias, C., Eds.).:459-462. Abstract
n/a