Borges, João Paulo, João Paulo Canejo, Susete Fernandes, Pedro Brogueira, and Maria Helena Godinho. "
Cellulose-Based Liquid Crystalline Composite Systems." In
Nanocellulose Polymer Nanocomposites: Fundamentals and Applications, edited by Vijay Kumar Thakur, 215-235. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014.
João, Carlos, Jorge Carvalho Silva, and João Paulo Borges. "
Chitin-Based Nanocomposites: Biomedical Applications." In
Eco-friendly Polymer Nanocomposites, edited by Vijay Kumar Thakur and Manju Kumari Thakur, 439-457. Springer India, 2015.
AbstractChitin, the second most abundant polymer in nature, is a renewable, nontoxic, biodegradable, and antibacterial polysaccharide. This semicrystalline biopolymer exhibits hierarchical structure from nano to micro-scale and is responsible for interesting living tissue properties. Recently, the scientific interest in chitin nanofibrils for applications in biomedical and tissue engineering fields has increased due to their particular capabilities such as matrix reinforcements, bioactivity and morphology similar to natural tissues. This chapter is focused on composite materials reinforced with chitin nanofibrils and their biomedical applications.
Soares, Paula I. P., Coro Echeverria, Ana Catarina Baptista, Carlos João, Susete Fernandes, Ana Almeida, Jorge Carvalho Silva, Maria Helena Godinho, and João Paulo Borges. "
Hybrid polysaccharide-based systems for biomedical applications." In
Hybrid Polymer Composite Materials: Applications, edited by Manju Kumari Thakur, Vijay Kumar Thakur and Asokan Pappu, 107-149. USA: Woodhead Publishing, Elsevier, 2017.
AbstractHybrid materials have been widely studied for structural applications. Polysaccharide-based fibers, especially cellulosic fibers, have been explored in the last two decades as substitutes of the traditional reinforcements made of glass or carbon fibers due to their mechanical properties. However, their biocompatibility, biodegradability, and chemistry have attracted the researchers and new developments in the field of smart and functional materials arise in diverse applications. This chapter will focus on the biomedical applications of polysaccharide-based smart and functional materials, namely those concerning biosensors and actuators, theranostic systems, and tissue-engineering applications. Special attention will be given to cellulose- and chitin/chitosan-based hybrid materials because these are the two most abundant polysaccharides and probably the most promising for the development of hybrid materials for biomedical applications. Biomimetic strategies for the development of smart and functional hybrid materials will also be highlighted.