Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
Strohmeier, P., C. Honnet, H. Perner-Wilson, M. Teyssier, B. Fruchard, Ana Catarina Baptista, and J. Steimle. Demo of PolySense: How to Make Electrically Functional Textiles In CHI Conference on Human Factors in Computing Systems., 2020. Abstract

We demonstrate a simple and accessible method for enhancing textiles with custom piezo-resistive properties. Based on in-situ polymerization, our method offers seamless integration at the material level, preserving a textile's haptic and mechanical properties. We demonstrate how to enhance a wide set of fabrics and yarns using only readily available tools. During each demo session, conference attendees may bring textile samples which will be polymerized in a shared batch. Attendees may keep these samples. While the polymerization is happening, attendees can inspect pre-made samples and explore how these might be integrated in functional circuits. Examples objects created using polymerization include rapid manufacturing of on-body interfaces, tie-dyed motion-capture clothing, and zippers that act as potentiometers.

Cristovão, Ana Filipa, David Sousa, Filipe Silvestre, Inês Ropio, Ana Gaspar, Célia Henriques, Alexandre Velhinho, Ana Catarina Baptista, Miguel Faustino, and Isabel Ferreira. "Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties." 3D Printing in Medicine 5 (2019): 12. AbstractWebsite

The use of 3D printing of hydrogels as a cell support in bio-printing of cartilage, organs and tissue has attracted much research interest. For cartilage applications, hydrogels as soft materials must show some degree of rigidity, which can be achieved by photo- or chemical polymerization. In this work, we combined chemical and UV laser polymeric cross-linkage to control the mechanical properties of 3D printed hydrogel blends. Since there are few studies on UV laser cross-linking combined with 3D printing of hydrogels, the work here reported offered many challenges.

Polyethylene glycol diacrylate (PEGDA), sodium alginate (SA) and calcium sulphate (CaSO4) polymer paste containing riboflavin (vitamin B2) and triethanolamine (TEOHA) as a biocompatible photoinitiator was printed in an extrusion 3D plotter using a coupled UV laser. The influence of the laser power on the mechanical properties of the printed samples was then examined in unconfined compression stress-strain tests of 1 × 1 × 1 cm3 sized samples. To evaluate the adhesion of the material between printed layers, compression measurements were performed along the parallel and perpendicular directions to the printing lines.

At a laser density of 70 mW/cm2, Young’s modulus was approximately 6 MPa up to a maximum compression of 20% in the elastic regime for both the parallel and perpendicular measurements. These values were within the range of biological cartilage values. Cytotoxicity tests performed with Vero cells confirmed the cytocompatibility.

We printed a partial tracheal model using optimized printing conditions and proved that the materials and methods developed may be useful for printing of organ models to support surgery or even to produce customized tracheal implants, after further optimization.

Vieira, Tânia, Jorge Carvalho Silva, Botelho A. M. do Rego, João Borges Borges, and Célia Henriques. "Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering." Materials Science and Engineering: C 103 (2019): 109819. AbstractWebsite

The composition and architecture of a scaffold determine its supportive role in tissue regeneration. In this work, we demonstrate the feasibility of obtaining a porous electrospun fibrous structure from biodegradable polyurethanes (Pus) synthesized using polycaprolactone-diol as soft segment and, as chain extenders, chitosan (CS) and/or dimethylol propionic acid. Fourier transform infrared spectroscopy and proton nuclear magnetic resonance confirmed the syntheses. Fibre mats' properties were analysed and compared with those of solvent cast films. Scanning electron microscopy images of the electrospun scaffolds revealed fibres with diameters around 1 μm. From tensile tests, we found that Young's modulus increases with CS content and is higher for films (2.5 MPa to 6.5 MPa) than for the corresponding fibre mats (0.8 MPa to 3.2 MPa). The use of CS as the only chain extender improves recovery ratio and resilience. From X-ray diffraction, a higher crystalline degree was identified in fibre mats than in the corresponding films. Films' wettability was enhanced by the presence of CS as shown by the decrease of water contact angle. X-ray photoelectron spectroscopy revealed that while ester groups are predominant at the films' surface, ester and urethanes are present in similar concentrations at fibres' surface, favouring the interaction with water molecules. Both films and fibres undergo hydrolytic degradation. In vitro evaluation was performed with human dermal fibroblasts. No PU sample revealed cytotoxicity. Cells adhered to fibre mats better than to films and proliferation was observed only for samples of CS-containing PUs. Results suggest that electrospun fibres of CS-based polyurethanes are good candidate scaffolds for soft tissue engineering.

Gavinho, Sílvia R., Pedro R. Prezas, Diogo J. Ramos, Isabel Sá-Nogueira, João Borges Borges, Carmo M. Lança, Jorge Carvalho Silva, Célia Henriques, Eduardo Pires, Jakka Suresh Kumar, and Manuel P. Graça. "Nontoxic glasses: Preparation, structural, electrical and biological properties." Applied Ceramics Technology 16 (2019): 1885-1894. AbstractWebsite

Bacterial infections affect about 1 in 5 patients who receive a dental implant within 5 years of surgery. To avoid the implant rejection it is necessary for the development of innovative biomaterials, with addition or substitution of the ions, for implant coatings that promote a strong bond with the new host bone and antibacterial action. The objective of this work was to synthesize a bioactive glass with different silver concentrations to evaluate their antibacterial performance. The glasses were synthesized with up to 2% silver content by melt-quenching. Structural, morphological, biological, and electrical properties of all samples were studied. The biological behavior was evaluated through cytotoxicity tests and antibacterial activity. The structural analysis shows that the introduction of silver do not promote significant changes, not altering the advantageous properties of the bioglass of the bioglass. It was verified that the glasses with a silver content from 0.5% to 2%, completely prevented the growth of both Staphylococcus aureus and Escherichia coli while being nontoxic toward mammalian cells. Therefore, these bioglasses are promising materials to be used in the production of dental implants with antimicrobial activity.

Gomes, Susana, Diana Querido, José Luís Ferreira, João Borges Borges, Célia Henriques, and Jorge Carvalho Silva. "Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineering." Journal of Polymer Research 26 (2019): 222. AbstractWebsite

Control of the properties of electrospun polycaprolactone can be achieved by adjusting the acetic acid:water ratio used to dissolve and electrospin the polymer. In this work, we studied the effect of using up to 15 wt% water in the solvent mixture. Solution conductivity and viscosity and fibre morphology vary dramatically with water content and solution age. Two days after initial solution preparation, electrospinning yields regular fibres for a water content of 0 wt% and 5 wt%, irregular fibres for a 10 wt% water content and irregular and fused fibres for a 15 wt% water content. Fibres with the highest crystallinity (60%) were obtained from solutions containing 5 wt% water while the highest elastic modulus (8.6 ± 1.4 MPa) and tensile stress (4.3 ± 0.3 MPa) pertain to fibres obtained from solutions containing 10 wt% water. Enzymatic fibre degradation is faster the higher the water content in the precursor solution. Adhesion ratio of human foetal fibroblasts was highest on scaffolds obtained from precursor solutions containing 0 wt% water. Cell population increases for all scaffolds and populations quickly become equivalent, with no statistically significant differences between them. Cells exhibit a more extended morphology on the 5 wt% scaffold and a more compact morphology on the 0 wt% scaffold. In summary, a small water content in the solvent allows a significant control over fibre diameter, scaffold properties and the production of scaffolds that support cell adhesion and proliferation. This strategy can be used in soft tissue engineering to influence cell behaviour and the degradation rate of the scaffolds.

Baptista, Ana Catarina, Inês Ropio, Beatriz Romba, Joana Nobre, Célia Henriques, Jorge Carvalho Silva, J. I. Martins, João Paulo Borges, and Isabel Ferreira. "Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries." Journal of Materials Chemistry A 6 (2018): 256-265. AbstractWebsite

A novel cellulose-based bio-battery made of electrospun fibers activated by biological fluids has been developed. This work reports a new concept for a fully organic bio-battery that takes advantage of the high surface to volume ratio achieved by an electrospun matrix composed of sub-micrometric fibers that acts simultaneously as the separator and the support of the electrodes. Polymer composites of polypyrrole (PPy) and polyaniline (PANI) with cellulose acetate (CA) electrospun matrix were produced by in situ chemical oxidation of pyrrole and aniline on the CA fibers. The structure (CA/PPy|CA|CA/PANI) generated a power density of 1.7 mW g−1 in the presence of simulated biological fluids, which is a new and significant contribution to the domain of medical batteries and fully organic devices for biomedical applications.

Vieira, Tânia, Jorge Carvalho Silva, João Paulo Borges, and Célia Henriques. "Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineering." European Polymer Journal 103 (2018): 271-281. AbstractWebsite

Biodegradable polyurethanes have been studied as scaffolds for tissue engineering due to their adjustable physico-chemical properties. In this work, we synthesized a biodegradable gelatin-based poly(urethane urea) using polycaprolactone-diol, as soft segment, and isophorone diisocyanate and gelatin from cold water fish skin as hard segment. The synthesis was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance and the influence of the amount of gelatin introduced in the polymer backbone was analyzed by thermal analysis. Gelatin-based poly(urethane urea) electrospun fibrous mats and solvent cast films were then produced and their physico-chemical and biological properties studied. They present an amorphous structure, elastomeric behavior and water contact angles typical of hydrophobic surfaces. Hydrolytic degradation was analyzed in phosphate buffer saline (PBS), lipase and trypsin solutions. No mass changes were detected during 37 days in PBS and trypsin while significant degradation by lipase was observed. Human foetal foreskin fibroblasts were seeded on the fibrous mats and films. Populations were evaluated by colorimetric cell viability assays and morphology by fluorescence imaging. The substrates supported cell adhesion and proliferation. The novel gelatin-based poly(urethane urea) fibrous mats offer attractive physico-chemical and biological properties for soft tissue engineering applications.

Zamora-Mora, Vanessa, Paula I. P. Soares, Coro Echeverria, Rebeca Hernández, and Carmen Mijangos. "Composite chitosan/agarose ferrogels for potential applications in magnetic hyperthermia." Gels 1 (2015): 69-80. AbstractWebsite

Composite ferrogels were obtained by encapsulation of magnetic nanoparticles at two different concentrations (2.0 and 5.0 % w/v) within mixed agarose/chitosan hydrogels having different concentrations of agarose (1.0, 1.5 and 2.0% (w/v)) and a fixed concentration of chitosan (0.5% (w/v)). The morphological characterization carried out by scanning electron microscopy showed that dried composite ferrogels present pore sizes in the micrometer range. Thermogravimetric measurements showed that ferrogels present higher degradation temperatures than blank chitosan/agarose hydrogels without magnetic nanoparticles. In addition, measurements of the elastic moduli of the composite ferrogels evidenced that the presence of magnetic nanoparticles in the starting aqueous solutions prevents to some extent the agarose gelation achieved by simply cooling chitosan/agarose aqueous solutions. Finally, it is shown that composite chitosan/agarose ferrogels are able to heat in response to the application of an alternating magnetic field so that they can be considered as potential biomaterials to be employed in magnetic hyperthermia treatments.

Ferreira, José Luis, Susana Gomes, Célia Henriques, João Paulo Borges, and Jorge Carvalho Silva. "Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and In Vitro evaluation." Journal of Applied Polymer Science 131 (2014): 41068. AbstractWebsite

The electrospinning of polycaprolactone (PCL) dissolved in glacial acetic acid and the characterization of the resultant nonwoven fiber mats is reported in this work. For comparison purposes, PCL fiber mats were also obtained by electrospinning the polymer dissolved in chloroform. Given the processing parameters chosen, results show that 14 and 17 wt % PCL solutions are not viscous enough and yield beaded fibers, 20 and 23 wt % solutions give rise to high quality fibers and 26 wt % solutions yield mostly irregular and fused fibers. The nonwoven mats are highly porous, retain the high tensile strain of PCL, and the fibers are semicrystalline. Cells adhere and proliferate equally well on all mats, irrespective of the solvent used in their production. In conclusion, mats obtained by electrospinning PCL dissolved in acetic acid are also a good option to consider when producing scaffolds for tissue engineering. Moreover, acetic acid is miscible with polar solvents, which may allow easier blending of PCL with hydrophilic polymers and therefore achieve the production of electrospun nanofibers with improved properties.

Ribeiro, Maximiano P., Ana Espiga, Daniela Silva, Patricia Baptista, Joaquim Henriques, Catarina Ferreira, Jorge Carvalho Silva, João Paulo Borges, Eduardo Pires, Paula Chaves, and Ilídio J. Correia. "Development of a new chitosan hydrogel for wound dressing." Wound repair and regeneration 17 (2009): 817-824. AbstractWebsite

Wound healing is a complex process involving an integrated response by many different cell types and growth factors in order to achieve rapid restoration of skin architecture and function. The present study evaluated the applicability of a chitosan hydrogel (CH) as a wound dressing. Scanning electron microscopy analysis was used to characterize CH morphology. Fibroblast cells isolated from rat skin were used to assess the cytotoxicity of the hydrogel. CH was able to promote cell adhesion and proliferation. Cell viability studies showed that the hydrogel and its degradation by-products are noncytotoxic. The evaluation of the applicability of CH in the treatment of dermal burns in Wistar rats was performed by induction of full-thickness transcutaneous dermal wounds. Wound healing was monitored through macroscopic and histological analysis. From macroscopic analysis, the wound beds of the animals treated with CH were considerably smaller than those of the controls. Histological analysis revealed lack of a reactive or a granulomatous inflammatory reaction in skin lesions with CH and the absence of pathological abnormalities in the organs obtained by necropsy, which supported the local and systemic histocompatibility of the biomaterial. The present results suggest that this biomaterial may aid the re-establishment of skin architecture.

Henriques, Célia, Ricardo Vidinha, David Botequim, João Paulo Borges, and Jorge Carvalho Silva. "A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus." Journal of nanoscience and nanotechnology 9 (2009): 3535-3545. AbstractWebsite

We assembled a new electrospinning apparatus and used poly(ethylene oxide) as a model polymer to perform a systematic study on the influence of solution and processing parameters on the morphology of electrospun nanofibers. Solution parameters studied were polymer concentration and molecular mass. The solvent used, 60 wt% water,40 wt% ethanol, was the same throughout the study. Processing parameters analyzed were: solution feed rate, needle tip-collector distance and electrostatic potential difference between the needle and collector. Solution viscosity increased both with polymer concentration and molecular mass. Polymer concentration plays a decisive role on the outcome of the electrospinning process: a low concentration led to the formation of beaded fibers; an intermediate concentration yielded good quality fibers; a high concentration resulted in a bimodal size distribution and at even higher concentration a distributed deposition. Fiber diameter increased with polymer molecular mass and higher molecular masses are associated with a higher frequency of splaying events. Fiber diameter increased linearly with solution feed rate. While an increase in needle-collector distance represents a weaker electric field, a greater distance to be covered by the fibers and a longer flight time, presumably favoring the formation of thinner fibers, as solvent evaporation leads to a local increase of concentration and viscosity, viscoelastic forces opposing stretching caused an increase of fiber diameter with needle-collector distance. A higher voltage applied at the needle is associated with a higher charging of the polymer and a higher electrical current through it ultimately leading to incomplete solvent evaporation and merged fibers being produced. Controlling the charging of the polymer independently of the electric field strength was achieved by applying a voltage to the collector while distance and potential difference were kept constant. The increased electrostatic repulsion associated with an increase of the high voltage applied to the needle led to the disappearance of merged fibers.