We assembled a new electrospinning apparatus and used poly(ethylene oxide) as a model polymer to perform a systematic study on the influence of solution and processing parameters on the morphology of electrospun nanofibers. Solution parameters studied were polymer concentration and molecular mass. The solvent used, 60 wt% water,40 wt% ethanol, was the same throughout the study. Processing parameters analyzed were: solution feed rate, needle tip-collector distance and electrostatic potential difference between the needle and collector. Solution viscosity increased both with polymer concentration and molecular mass. Polymer concentration plays a decisive role on the outcome of the electrospinning process: a low concentration led to the formation of beaded fibers; an intermediate concentration yielded good quality fibers; a high concentration resulted in a bimodal size distribution and at even higher concentration a distributed deposition. Fiber diameter increased with polymer molecular mass and higher molecular masses are associated with a higher frequency of splaying events. Fiber diameter increased linearly with solution feed rate. While an increase in needle-collector distance represents a weaker electric field, a greater distance to be covered by the fibers and a longer flight time, presumably favoring the formation of thinner fibers, as solvent evaporation leads to a local increase of concentration and viscosity, viscoelastic forces opposing stretching caused an increase of fiber diameter with needle-collector distance. A higher voltage applied at the needle is associated with a higher charging of the polymer and a higher electrical current through it ultimately leading to incomplete solvent evaporation and merged fibers being produced. Controlling the charging of the polymer independently of the electric field strength was achieved by applying a voltage to the collector while distance and potential difference were kept constant. The increased electrostatic repulsion associated with an increase of the high voltage applied to the needle led to the disappearance of merged fibers.