Publications

Export 153 results:
Sort by: Author Title Type [ Year  (Desc)]
2009
Total lead and its stable isotopes in the digestive gland of Octopus vulgaris as a fingerprint, Raimundo, J., Vale C., Caetano M., Cesario R., and Moura I. , Aquatic Biology, 2009, Volume 6, Number 1-3, p.25-30, (2009) AbstractWebsite

We hypothesised that the isotopic signature of Pb in the digestive gland of the common octopus reflects the organisms' sources of Pb, and investigated whether isotopic Pb ratios are useful in characterising octopus populations. A total of 47 Octopus vulgaris individuals were captured between November 2005 and September 2006 in 2 areas of the Portuguese coast, near Matosinhos (Area A; NW coast) and Olhao (Area B; south coast), and digestive glands were analysed for total Pb and its stable isotopes. The same determinations were performed in 22 samples of surface sediments from the 2 areas. Pb concentrations in the digestive gland of specimens from Area B (2.8 to 13.0 mu g g(-1)) exceeded the values found in Area A (1.3 to 8.3 mu g g(-1)). A similar pattern was found for the isotopic Pb ratios: (206)Pb/(207)Pb was 1.173 to 1.185 for Area A and 1.165 to 1.172 for B; (206)Pb/(208)Pb was 0.476 to 0.487 for Area A and 0.318 to 0.483 for B. The different signatures of the digestive glands are in line with those observed in the surface sediments of the 2 coastal areas (e.g. (206)Pb/(207)Pb was 1.179 to 1.207 for Area A and 1.171 to 1.181 for B). However, the isotopic Pb signature of octopus was less radiogenic than that of sediments. Because octopus has a short life span (up to 24 mo) the signature reflects recent sources of Pb that have a less radiogenic signature. The Pb signature of surface sediments tends to integrate the record of the previous few years or decades, due to the frequent resuspension of the upper layer of coastal sediments. The mixing of sediments deposited during those periods results in higher isotopic Pb ratios (more radiogenic). The consistent differences between the 2 areas, in sediments and octopus, points towards the isotopic Pb signature as a possible useful tool to distinguish octopus populations.

2008
Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments, Costa, P. M., Repolho T., Caeiro S., Diniz M. E., Moura I., and Costa M. H. , Ecotoxicology and Environmental Safety, Sep, Volume 71, Number 1, p.117-124, (2008) AbstractWebsite

Metallothionein (MT) in the liver of gilthead seabreams (Sparus aurata L., 1758) exposed to Sado estuary (Portugal) sediments was quantified to assess the MT induction potential as a biomarker of sediment-based contamination by copper (Cu), cadmium (U), lead (Pb) and arsenic (As). Sediments were collected from two control sites and four sites with different levels of contamination. Sediment Cu, Cd, Pb, As, total organic matter (TOM) and fine fraction (FF) levels were determined. Generalized linear models (GLM) allowed integration of sediment parameters with liver Cu, Cd, Pb, As and MT concentrations. Although sediment metal levels were lower than expected, we relate NIT with liver Cd and also with interactions between liver and sediment Cu and between liver Cu and TOM. We suggest integrating biomarkers and environmental parameters using statistical models such as GLM as a more sensitive and reliable technique for sediment risk assessment than traditional isolated biomarker approaches. (C) 2007 Elsevier Inc. All rights reserved.

Influence of the protein staining in the fast ultrasonic sample treatment for protein identification through peptide mass fingerprint and matrix-assisted laser desorption ionization time of flight mass spectrometry, Galesio, M., Vieira D. V., Rial-Otero R., Lodeiro C., Moura I., and Capelo J. L. , Journal of Proteome Research, May, Volume 7, Number 5, p.2097-2106, (2008) AbstractWebsite

The influence of the protein staining used to visualize protein bands, after in-gel protein separation, for the correct identification of proteins by peptide mass fingerprint (PMF) after application of the ultrasonic in-gel protein protocol was studied. Coomassie brilliant blue and silver nitrate, both visible stains, and the fluorescent dyes Sypro Red and Sypro Orange were evaluated. Results obtained after comparison with the overnight in-gel protocol showed that good results, in terms of protein sequence coverage and number of peptides matched, can be obtained with anyone of the four stains studied. Two minutes of enzymatic digestion time was enough for proteins stained with coomassie blue, while 4 min was necessary when silver or Sypro stainings were employed in order to reach equivalent results to those obtained for the overnigh in-gel protein protocol. For the silver nitrate stain, the concentration of silver present in the staining solution must be 0.09% (w/v) to minimize background in the MALDI mass spectra.

Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study, Paes de Sousa, P. M., Pauleta S. R., Rodrigues D., Simoes Goncalves M. L., Pettigrew G. W., Moura I., Moura J. J., and Correia dos Santos M. M. , J Biol Inorg Chem, Jun, Volume 13, Number 5, p.779-87, (2008) AbstractWebsite

A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 microM was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.

Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum, Najmudin, S., Gonzalez P. J., Trincao J., Coelho C., Mukhopadhyay A., Cerqueira N. M., Romao C. C., Moura I., Moura J. J., Brondino C. D., and Romao M. J. , J Biol Inorg Chem, Jun, Volume 13, Number 5, p.737-53, (2008) AbstractWebsite

Nitrate reductase from Desulfovibrio desulfuricans ATCC 27774 (DdNapA) is a monomeric protein of 80 kDa harboring a bis(molybdopterin guanine dinucleotide) active site and a [4Fe-4S] cluster. Previous electron paramagnetic resonance (EPR) studies in both catalytic and inhibiting conditions showed that the molybdenum center has high coordination flexibility when reacted with reducing agents, substrates or inhibitors. As-prepared DdNapA samples, as well as those reacted with substrates and inhibitors, were crystallized and the corresponding structures were solved at resolutions ranging from 1.99 to 2.45 A. The good quality of the diffraction data allowed us to perform a detailed structural study of the active site and, on that basis, the sixth molybdenum ligand, originally proposed to be an OH/OH(2) ligand, was assigned as a sulfur atom after refinement and analysis of the B factors of all the structures. This unexpected result was confirmed by a single-wavelength anomalous diffraction experiment below the iron edge (lambda = 1.77 A) of the as-purified enzyme. Furthermore, for six of the seven datasets, the S-S distance between the sulfur ligand and the Sgamma atom of the molybdenum ligand Cys(A140) was substantially shorter than the van der Waals contact distance and varies between 2.2 and 2.85 A, indicating a partial disulfide bond. Preliminary EPR studies under catalytic conditions showed an EPR signal designated as a turnover signal (g values 1.999, 1.990, 1.982) showing hyperfine structure originating from a nucleus of unknown nature. Spectropotentiometric studies show that reduced methyl viologen, the electron donor used in the catalytic reaction, does not interact directly with the redox cofactors. The turnover signal can be obtained only in the presence of the reaction substrates. With use of the optimized conditions determined by spectropotentiometric titration, the turnover signal was developed with (15)N-labeled nitrate and in D(2)O-exchanged DdNapA samples. These studies indicate that this signal is not associated with a Mo(V)-nitrate adduct and that the hyperfine structure originates from two equivalent solvent-exchangeable protons. The new coordination sphere of molybdenum proposed on the basis of our studies led us to revise the currently accepted reaction mechanism for periplasmic nitrate reductases. Proposals for a new mechanism are discussed taking into account a molybdenum and ligand-based redox chemistry, rather than the currently accepted redox chemistry based solely on the molybdenum atom.

Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774, Gavel, O. Y., Kladova A. V., Bursakov S. A., Dias J. M., Texeira S., Shnyrov V. L., Moura J. J., Moura I., Romao M. J., and Trincao J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Jul 1, Volume 64, Number Pt 7, p.593-5, (2008) AbstractWebsite

Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 A resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal), Raimundo, J., Vale C., Duarte R., and Moura I. , Science of the Total Environment, Feb 15, Volume 390, Number 2-3, p.410-416, (2008) AbstractWebsite

Cd and Pb and their sub-cellular distributions were determined in Cu Concentrations of Zn,, composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment. (c) 2007 Elsevier B.V. All rights reserved.

2007
Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Sonoreactor versus ultrasonic probe, Rial-Otero, R., Carreira R. J., Cordeiro F. M., Moro A. J., Santos H. M., Vale G., Moura I., and Capelo J. L. , Journal of Chromatography A, Sep 28, Volume 1166, Number 1-2, p.101-107, (2007) AbstractWebsite

Two different ultrasonic energy sources, the sonoreactor and the ultrasonic probe, are compared for enzymatic digestion of proteins for protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDl-TOF-MS) using the peptide mass fingerprint (PMF) procedure. Variables such as (i) trypsin/protein ratio; (ii) sonication time; (iii) ultrasound amplitude; and (iv) protein concentration are studied and compared. As a general rule, the trypsin/protein ratio and the minimum protein concentration successfully digested are similar with both ultrasonic energy sources. Results showed that the time needed to digest proteins was shorter with the ultrasonic probe, 60 s versus 120 s, for the same amplitude of sonication, 50%. However, lower standard deviations and cleaner MALDI-TOF-MS spectra were obtained with the sonoreactor. In addition, the sonoreactor device provided higher sample throughput (6 samples for the sonoreactor versus 1 sample for the ultrasonic probe) and easier sample handling for lower sample volumes (25 mu l). Finally, a comparison of both methodologies for the specific identification of the adenylylsulphate reductase alfa subunit from a complex protein mixture from Desulfovibrio desulfuricans ATCC 27774 was done as a proof of the procedure. (c) 2007 Elsevier B.V. All rights reserved.

Improving sample treatment for in-solution protein identification by peptide mass fingerprint using matrix-assisted laser desorption/ionization time-of-flight mass Spectrometry, Santos, H. M., Rial-Otero R., Fernandes L., Vale G., Rivas M. G., Moura I., and Capelo J. L. , Journal of Proteome Research, Sep, Volume 6, Number 9, p.3393-3399, (2007) AbstractWebsite

Three ultrasonic energy sources were studied to speed up the sample treatment for in-solution protein identification by peptide mass fingerprint using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein reduction, alkylation, and enzymatic digestion steps were done in 15 min. Nine proteins, including zinc resistance-associated protein precursor from Desulfovibrio desulfuricans strain G20 and split-soret cytochrome c from D. desulfuricans ATCC27774 were successfully identified with the new protocol.

EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction, Rivas, M. G., Gonzalez P. J., Brondino C. D., Moura J. J., and Moura I. , J Inorg Biochem, Nov, Volume 101, Number 11-12, p.1617-22, (2007) AbstractWebsite

The EPR characterization of the molybdenum(V) forms obtained on formate reduction of both as-prepared and inhibited formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774, an enzyme that catalyzes the oxidation of formate to CO(2), is reported. The Mo(V) EPR signal of the as-prepared formate-reduced enzyme is rhombic (g(max)=2.012, g(mid)=1.996, g(min)=1.985) and shows hyperfine coupling with two nuclear species with I=1/2. One of them gives an anisotropic splitting and is not solvent exchangeable (A(max)=11.7, A(mid)=A(min)=non-detectable, A-values in cm(-1)x10(-4)). The second species is exchangeable with solvent and produces a splitting at the three principal g-values (A(max)=7.7, A(mid)=10.0, A(min)=9.3). The hyperfine couplings of the non-solvent and solvent exchangeable nuclei are assigned to the hydrogen atoms of the beta-methylene carbon of a selenocysteine and to a Mo ligand whose nature, sulfydryl or hydroxyl, is still in debate. The Mo(V) species obtained in the presence of inhibitors (azide or cyanide) yields a nearly axial EPR signal showing only one detectable splitting given by nuclear species with I=1/2 (g(max)=2.092, g(mid)=2.000, g(min)=1.989, A(max)=non-detectable, A(mid)=A(min)=7.0), which is originated from the alpha-proton donated by the formate to a proximal ligand of the molybdenum. The possible structures of both paramagnetic molybdenum species (observed upon formate reduction in presence and absence of inhibitors) are discussed in comparison with the available structural information of this enzyme and the structural and EPR properties of the closely related formate dehydrogenase-H from Escherichia coli.

Gas chromatography mass spectrometry determination of acaricides from honey after a new fast ultrasonic-based solid phase micro-extraction sample treatment, Rial-Otero, R., Gaspar E. M., Moura I., and Capelo J. L. , Talanta, Mar 30, Volume 71, Number 5, p.1906-1914, (2007) AbstractWebsite

A method is reported for the determination of acaricides (amitraz, bromopropylate, coumaphos and fluvalinate) from honey by gas chromatography mass spectrometry after a new fast solid phase micro-extraction, SPME, procedure. Six different fibers were assessed for micro-extraction purpose studying the following variables: (i) SPME coating, (ii) extraction temperature, (iii) extraction time, (iv) desorption conditions and (v) agitation conditions. The new ultrasonic bath technology providing different sonication frequencies (35 and 130 kHz) and different working modes (Sweep, Standard and Degas) was studied and optimized for speeding up the acaricide micro-extraction. The best extraction results were achieved with the polyacrylate fiber. The extraction process was done in 30 min using the ultrasonic bath at 130 kHz in the Standard mode. Quality parameters of the proposed method show a good precision (<11%) and detection and quantitation limits lower than 6 and 15 ng/g, respectively, except for fluvalinate. Eleven Portuguese commercial honey samples were analyzed with the developed method in order to assess the performance of the method with real samples and to determine whether the concentration of acaricides in honey exceed their maximum residue levels (MRLs). Acaricide residues detected were lower than those established by the legislation. (c) 2006 Elsevier B.V. All rights reserved.

Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase, Thapper, A., Boer D. R., Brondino C. D., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Mar, Volume 12, Number 3, p.353-66, (2007) AbstractWebsite

Two arsenite-inhibited forms of each of the aldehyde oxidoreductases from Desulfovibrio gigas and Desulfovibrio desulfuricans have been studied by X-ray crystallography and electron paramagnetic resonance (EPR) spectroscopy. The molybdenum site of these enzymes shows a distorted square-pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. Arsenite addition to active as-prepared enzyme or to a reduced desulfo form yields two different species called A and B, respectively, which show different Mo(V) EPR signals. Both EPR signals show strong hyperfine and quadrupolar couplings with an arsenic nucleus, which suggests that arsenic interacts with molybdenum through an equatorial ligand. X-ray data of single crystals prepared from EPR-active samples show in both inhibited forms that the arsenic atom interacts with the molybdenum ion through an oxygen atom at the catalytic labile site and that the sulfido ligand is no longer present. EPR and X-ray data indicate that the main difference between both species is an equatorial ligand to molybdenum which was determined to be an oxo ligand in species A and a hydroxyl/water ligand in species B. The conclusion that the sulfido ligand is not essential to determine the EPR properties in both Mo-As complexes is achieved through EPR measurements on a substantial number of randomly oriented chemically reduced crystals immediately followed by X-ray studies on one of those crystals. EPR saturation studies show that the electron transfer pathway, which is essential for catalysis, is not modified upon inhibition.

New findings for in-gel digestion accelerated by high-intensity focused ultrasound for protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, Carreira, R. J., Cordeiro F. M., Moro A. J., Rivas M. G., Rial-Otero R., Gaspar E. M., Moura I., and Capelo J. L. , Journal of Chromatography A, Jun 15, Volume 1153, Number 1-2, p.291-299, (2007) AbstractWebsite

New findings in sample treatment based on high-intensity focused ultrasound (HIFU) for protein digestion after polyacrylamide gel electrophoresis separation are presented. The following variables were studied: (i) sample volume; (ii) sonotrode diameter; (iii) previous protein denaturation; (iv) cooling; (v) enzyme concentration; and (vi) protein concentration. Results showed that positive protein identification could be done after protein separation by gel electrophoresis through peptide mass fingerprint (PMF) in a volume as low as 25 mu L. The time needed was less than 2 min and no cooling was necessary. The importance of the sonotrode diameter was negligible. On the other hand, protein denaturation before sonication was a trade-off for the success of procedure here described. The protein coverage was raised from 5 to 30%, and the number of peptides matching the proteins was also increased in a percentage ranging 10-100% when the classical overnight treatment is compared with the proposed HIFU procedure. The minimum amount of protein that can be identified using the HIFU sample treatment by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was 0.06 mu g. The lower concentration of trypsin successfully used to obtain an adequate protein digestion was 3.6 mu g/mL. (c) 2006 Elsevier B.V. All rights reserved.

Heterodimeric nitrate reductase (NapAB) from Cupriavidus necator H16: purification, crystallization and preliminary X-ray analysis, Coelho, C., Gonzalez P. J., Trincao J., Carvalho A. L., Najmudin S., Hettman T., Dieckman S., Moura J. J., Moura I., and Romao M. J. , Acta Crystallogr Sect F Struct Biol Cryst Commun, Jun 1, Volume 63, Number Pt 6, p.516-9, (2007) AbstractWebsite

The periplasmic nitrate reductase from Cupriavidus necator (also known as Ralstonia eutropha) is a heterodimer that is able to reduce nitrate to nitrite. It comprises a 91 kDa catalytic subunit (NapA) and a 17 kDa subunit (NapB) that is involved in electron transfer. The larger subunit contains a molybdenum active site with a bis-molybdopterin guanine dinucleotide cofactor as well as one [4Fe-4S] cluster, while the small subunit is a di-haem c-type cytochrome. Crystals of the oxidized form of this enzyme were obtained using polyethylene glycol 3350 as precipitant. A single crystal grown at the High Throughput Crystallization Laboratory of the EMBL in Grenoble diffracted to beyond 1.5 A at the ESRF (ID14-1), which is the highest resolution reported to date for a nitrate reductase. The unit-cell parameters are a = 142.2, b = 82.4, c = 96.8 A, beta = 100.7 degrees, space group C2, and one heterodimer is present per asymmetric unit.

Crystal structure of the 16 heme cytochrome from Desulfovibrio gigas: A glycosylated protein in a sulphate-reducing bacterium, Santos-Silva, Teresa, Dias Joao Miguel, Dolla Alain, Durand Marie-Claire, Goncalves Luisa L., Lampreia Jorge, Moura Isabel, and Romao Maria Joao , Journal of Molecular Biology, Jul 20, Volume 370, Number 4, p.659-673, (2007) AbstractWebsite

Sulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas. Crystals were grown. using polyethylene glycol 8K and zinc acetate, and diffracted beyond 2.1 angstrom resolution. A multiple-wavelength anomalous dispersion experiment at the iron absorption edge enabled us to obtain good-quality phases for structure solution and model building. DgHmcA has a V-shape architecture, already observed in HmcA isolated from Desulfovibrio vulgaris Hildenborough. The presence of an oligosaccharide molecule covalently bound to an Asn residue was observed in the electron density maps of DgHmcA and confirmed by mass spectrometry. Three modified monosaccharides appear at the highly hydrophobic vertex, possibly acting as an anchor of the protein to the cytoplasmic membrane. (c) 2007 Elsevier Ltd. All rights reserved.

Chromatographic-based methods for pesticide determination in honey: An overview, Rial-Otero, R., Gaspar E. M., Moura I., and Capelo J. L. , Talanta, Feb 15, Volume 71, Number 2, p.503-514, (2007) AbstractWebsite

Nowadays the control of pesticides in honey is an issue of primary health importance as consequence of the increasing content of these chemicals in the aforementioned matrix. This poisoning has led to the worldwide increasing loss of bees since 1995. From Europe to Canada, scientist, beekeepers and chemical companies disagree about the reasons that have led to colony losses higher than 50% in some areas. This problem has become a public health issue due to the high honey worldwide consumption. The presence of pesticides in honey has been directly related to bees' mortality by some researchers through pesticide presence in (1) pollen, (2) honeycomb walls, (3) own bees and (4) honey. In this work we describe the actual state-of-the-art for pesticides determination in honey along with a review in this subject focused on sample treatments and instrumentation. Finally, future trends are also commented. (c) 2006 Elsevier B.V. All rights reserved.

Sonoreactor-based technology for fast high-throughput proteolytic digestion of proteins, Rial-Otero, R., Carreira R. J., Cordeiro F. M., Moro A. J., Fernandes L., Moura I., and Capelo J. L. , Journal of Proteome Research, Feb, Volume 6, Number 2, p.909-912, (2007) AbstractWebsite

Fast (120 s) and high-throughput (more than six samples at once) in-gel trypsin digestion of proteins using sonoreactor technology has been achieved. Successful protein identification was done by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, MALDI-TOF-MS. Specific identification of the adenylylsulphate reductase alfa subunit from a complex protein mixture from Desulfovibrio desulfuricans ATCC 27774 was done as a proof of the methodology. The new sample treatment is of easy implementation, saves time and money, and can be adapted to online procedures and robotic platforms.

Simplifying sample handling for protein identification by peptide mass fingerprint using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Cordeiro, Francisco M., Carreira Ricardo J., Rial-Otero Raquel, Rivas Gabriela M., Moura Isabel, and Capelo Jose-Luis , Rapid Communications in Mass Spectrometry, 2007, Volume 21, Number 20, p.3269-3278, (2007) AbstractWebsite

An ultrasonic bath, an ultrasonic probe and a sonoreactor were used to speed up the kinetics of the reactions involved in each step of the sample handling for in-gel protein identification by peptide mass fingerprint, PMF, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The following steps were successfully accelerated using ultrasonic energy: gel washing, protein reduction, and protein alkylation. As a result, a reduction comprising 80% to 90% of the total time involved in the classic approach was achieved. In addition the sample handling was also drastically simplified. The number of peptides identified and the protein sequence coverage obtained for the new procedure were comparable to those obtained with the traditional sample treatment for the following protein standards: glycogen phosphorylase b, BSA, ovalbumin, carbonic anhydrase, trypsin inhibitor and alpha-lactalbumin. Finally, as a proof of the procedure, specific proteins were identified from complex protein mixtures obtained from three different sulphate- reducing bacteria: Desulfovibrio, desulfuricans G20, Desulfuvibrio gigas NCIB 9332, and Desulfuvibrio desulfuricans ATCC 27774. Copyright (c) 2007 John Wiley & Sons, Ltd.

2006
Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria, Brondino, C. D., Rivas M. G., Romao M. J., Moura J. J., and Moura I. , Acc Chem Res, Oct, Volume 39, Number 10, p.788-96, (2006) AbstractWebsite

Molybdenum and tungsten are found in biological systems in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen-atom-transfer reactions. The metal atom (Mo or W) is coordinated to one or two pyranopterin molecules and to a variable number of ligands such as oxygen (oxo, hydroxo, water, serine, aspartic acid), sulfur (cysteines), and selenium (selenocysteines) atoms. In addition, these proteins contain redox cofactors such as iron-sulfur clusters and heme groups. All of these metal cofactors are along an electron-transfer pathway that mediates the electron exchange between substrate and an external electron acceptor (for oxidative reactions) or donor (for reductive reactions). We describe in this Account a combination of structural and electronic paramagnetic resonance studies that were used to reveal distinct aspects of these enzymes.

Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate, Ramos, S., Manuel M., Tiago T., Duarte R., Martins J., Gutierrez-Merino C., Moura J. J., and Aureliano M. , J Inorg Biochem, Nov, Volume 100, Number 11, p.1734-43, (2006) AbstractWebsite

Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

Sample treatment for protein identification by mass spectrometry-based techniques, Lopez-Ferrer, D., Canas B., Vazquez J., Lodeiro C., Rial-Otero R., Moura I., and Capelo J. L. , Trac-Trends in Analytical Chemistry, Nov, Volume 25, Number 10, p.996-1005, (2006) AbstractWebsite

Rapid identification of proteins is of primary importance for the analytical community. Protein-biomarker discovery for medical diagnostics or pharmacological purposes is becoming one of the hottest research topics. Moreover, rapid identification of proteins can help unambiguous bacterial and virus detection. In addition, the fast identification of bacteria can be used to beat bioterrorism. As a consequence, new analytical methodologies have emerged recently with the aim of making protein analysis as fast and as confident as possible. In this article, we critically review the new trends in sample treatment for protein identification and comment on the prospects for the future in this promising analytical area. (c) 2006 Elsevier Ltd. All rights reserved.

EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774, Gonzalez, P. J., Rivas M. G., Brondino C. D., Bursakov S. A., Moura I., and Moura J. J. , J Biol Inorg Chem, Jul, Volume 11, Number 5, p.609-16, (2006) AbstractWebsite

Nitrate reductases are enzymes that catalyze the conversion of nitrate to nitrite. We report here electron paramagnetic resonance (EPR) studies in the periplasmic nitrate reductase isolated from the sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774. This protein, belonging to the dimethyl sulfoxide reductase family of mononuclear Mo-containing enzymes, comprises a single 80-kDa subunit and contains a Mo bis(molybdopterin guanosine dinucleotide) cofactor and a [4Fe-4S] cluster. EPR-monitored redox titrations, carried out with and without nitrate in the potential range from 200 to -500 mV, and EPR studies of the enzyme, in both catalytic and inhibited conditions, reveal distinct types of Mo(V) EPR-active species, which indicates that the Mo site presents high coordination flexibility. These studies show that nitrate modulates the redox properties of the Mo active site, but not those of the [4Fe-4S] center. The possible structures and the role in catalysis of the distinct Mo(V) species detected by EPR are discussed.

The first crystal structure of class III superoxide reductase from Treponema pallidum, Santos-Silva, T., Trincao J., Carvalho A. L., Bonifacio C., Auchere F., Raleiras P., Moura I., Moura J. J., and Romao M. J. , J Biol Inorg Chem, Jul, Volume 11, Number 5, p.548-58, (2006) AbstractWebsite

Superoxide reductase (SOR) is a metalloprotein containing a non-heme iron centre, responsible for the scavenging of superoxide radicals in the cell. The crystal structure of Treponema pallidum (Tp) SOR was determined using soft X-rays and synchrotron radiation. Crystals of the oxidized form were obtained using poly(ethylene glycol) and MgCl2 and diffracted beyond 1.55 A resolution. The overall architecture is very similar to that of other known SORs but TpSOR contains an N-terminal domain in which the desulforedoxin-type Fe centre, found in other SORs, is absent. This domain conserves the beta-barrel topology with an overall arrangement very similar to that of other SOR proteins where the centre is present. The absence of the iron ion and its ligands, however, causes a decrease in the cohesion of the domain and some disorder is observed, particularly in the region where the metal would be harboured. The C-terminal domain exhibits the characteristic immunoglobulin-like fold and harbours the Fe(His)4(Cys) active site. The five ligands of the iron centre are well conserved despite some disorder observed for one of the four molecules in the asymmetric unit. The participation of a glutamate as the sixth ligand of some of the iron centres in Pyrococcus furiosus SOR was not observed in TpSOR. A possible explanation is that either X-ray photoreduction occurred or there was a mixture of redox states at the start of data collection. In agreement with earlier proposals, details in the TpSOR structure also suggest that Lys49 might be involved in attraction of superoxide to the active site.

Biochemical and spectroscopic characterization of an aldehyde oxidoreductase isolated from Desulfovibrio aminophilus, Thapper, A., Rivas M. G., Brondino C. D., Ollivier B., Fauque G., Moura I., and Moura J. J. , J Inorg Biochem, Jan, Volume 100, Number 1, p.44-50, (2006) AbstractWebsite

Aldehyde oxidoreductase (AOR) activity has been found in a number of sulfate-reducing bacteria. The enzyme that is responsible for the conversion of aldehydes to carboxylic acids is a mononuclear molybdenum enzyme belonging to the xanthine oxidase family. We report here the purification and characterization of AOR isolated from the sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254, an aminolytic strain performing thiosulfate dismutation. The enzyme is a homodimer (ca. 200 kDa), containing a molybdenum centre and two [2Fe-2S] clusters per monomer. UV/Visible and electron paramagnetic resonance (EPR) spectra of D. aminophilus AOR recorded in as-prepared and reduced states are similar to those obtained in AORs from Desulfovibrio gigas, Desulfovibrio desulfuricans and Desulfovibrio alaskensis. Despite AOR from D. aminophilus is closely related to other AORs, it presents lower activity towards aldehydes and no activity towards N-heterocyclic compounds, which suggests another possible role for this enzyme in vivo. A comparison of the molecular and EPR properties of AORs from different Desulfovibrio species is also included.

Redox chemistry of low-pH forms of tetrahemic cytochrome c3, Santos, M., Dos Santos M. M., Goncalves M. L., Costa C., Romao J. C., and Moura J. J. , J Inorg Biochem, Dec, Volume 100, Number 12, p.2009-16, (2006) AbstractWebsite

Desulfovibrio vulgaris Hildenborough cytochrome c(3) contains four hemes in a low-spin state with bis-histidinyl coordination. High-spin forms of cytochrome c(3) can be generated by protonation of the axial ligands in order to probe spin equilibrium (low-spin/high-spin). The spin alterations occurring at acid pH, the associated changes in redox potentials, as well as the reactivity towards external ligands were followed by the conjunction of square wave voltammetry and UV-visible, CD, NMR and EPR spectroscopies. These processes may be used for modelling the action of enzymes that use spin equilibrium to promote enzyme activity and reactivity towards small molecules.