Publications

Export 197 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
I
Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium, Lewis, S. A., and de Moura J. L. , Nature, Jun 24, Volume 297, Number 5868, p.685-8, (1982) AbstractWebsite
n/a
Influence of storage solution on enamel demineralization submitted to pH cycling, Moura, J. S., Rodrigues L. K., Del Bel Cury A. A., Lima E. M., and Garcia R. M. , J Appl Oral Sci, Sep, Volume 12, Number 3, p.205-8, (2004) AbstractWebsite

Extracted human teeth are frequently used for research or educational purposes. Therefore, it is necessary to store them in disinfectant solutions that do not alter dental structures. Thus, this study evaluated the influence of storage solution on enamel demineralization. For that purpose, sixty samples were divided into the following groups: enamel stored in formaldehyde (F1), stored in thymol (T1), stored in formaldehyde and submitted to pH cycling (F2), stored in thymol and submitted to pH cycling (T2). All samples were evaluated by cross-sectional microhardness analysis and had their percentage of mineral volume versus micrometer (integrated area) determined. Differences between groups were found up to 30-microm depth from the enamel surface (p < 0.05), where samples from group T2 were more demineralized. It was concluded that the storage solution influenced the reaction of a dental substrate to a cariogenic challenge, suggesting that formaldehyde may increase enamel resistance to demineralization, when compared to demineralization occurring in enamel stored in thymol solution.

Influence of the protein staining in the fast ultrasonic sample treatment for protein identification through peptide mass fingerprint and matrix-assisted laser desorption ionization time of flight mass spectrometry, Galesio, M., Vieira D. V., Rial-Otero R., Lodeiro C., Moura I., and Capelo J. L. , Journal of Proteome Research, May, Volume 7, Number 5, p.2097-2106, (2008) AbstractWebsite

The influence of the protein staining used to visualize protein bands, after in-gel protein separation, for the correct identification of proteins by peptide mass fingerprint (PMF) after application of the ultrasonic in-gel protein protocol was studied. Coomassie brilliant blue and silver nitrate, both visible stains, and the fluorescent dyes Sypro Red and Sypro Orange were evaluated. Results obtained after comparison with the overnight in-gel protocol showed that good results, in terms of protein sequence coverage and number of peptides matched, can be obtained with anyone of the four stains studied. Two minutes of enzymatic digestion time was enough for proteins stained with coomassie blue, while 4 min was necessary when silver or Sypro stainings were employed in order to reach equivalent results to those obtained for the overnigh in-gel protein protocol. For the silver nitrate stain, the concentration of silver present in the staining solution must be 0.09% (w/v) to minimize background in the MALDI mass spectra.

Information from e.p.r. spectroscopy on the iron-sulphur centres of the iron-molybdenum protein (aldehyde oxidoreductase) of Desulfovibrio gigas, Bray, R. C., Turner N. A., Legall J., Barata B. A., and Moura J. J. , Biochem J, Dec 15, Volume 280 ( Pt 3), p.817-20, (1991) AbstractWebsite

E.p.r. spectra of reduced iron-sulphur centres of the aldehyde oxidoreductase (iron-molybdenum protein) of Desulfovibrio gigas were recorded at X-band and Q-band frequencies and simulated. Results are consistent with the view that only two types of [2Fe-2S] clusters are present, as in eukaryotic molybdenum-containing hydroxylases. The data indicate the Fe/SI centre to be very similar, and the Fe/SII centre somewhat similar, to these centres in the eukaryotic enzymes.

Interconversion from 3Fe into 4Fe clusters in the presence of Desulfovibrio gigas cell extracts, Moura, J. J., Legall J., and Xavier A. V. , Eur J Biochem, Jun 1, Volume 141, Number 2, p.319-22, (1984) AbstractWebsite

Desulfovibrio gigas ferredoxin II (FdII) contains a single 3Fe cluster [Huynh, B.H., Moura, J.J.G., Moura, I., Kent, T.A., LeGall, J., Xavier, A.V., and Munck, E. (1980) J. Biol. Chem. 255, 3242-3244]. In the oxidized state the protein exhibits an intense electron paramagnetic resonance (EPR) signal at g = 2.02. Upon one-electron reduction the center becomes EPR silent. In the presence of D. gigas crude cell extracts, devoid of acidic electron carriers and supplemented with pyruvate and FdII, an EPR signal typical of reduced [4Fe-4S] centers is obtained. The appearance of this signal correlates with the beginning of stimulation of the phosphoroclastic reaction as judged by the production of H2. These results, supported by the occurrence of easy chemical conversion of the 3Fe cluster of D. gigas ferredoxin into 4Fe structures [Moura, J.J.G., Moura, I., Kent, T.A., Lipscomb, J.D., Huynh, B.H., LeGall, J., Xavier, A.V., and Munch, E. (1982) J. Biol. Chem. 257, 6259-6267], suggest that cluster conversion takes place in conditions close to the situation in vivo. This cluster interconversion is discussed in the context of some of the relevant metabolic pathways of Desulfovibrio spp.

Interconversions of [3Fe-3S] and [4Fe-4S] clusters. Mossbauer and electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin II, Moura, J. J., Moura I., Kent T. A., Lipscomb J. D., Huynh B. H., Legall J., Xavier A. V., and Munck E. , J Biol Chem, Jun 10, Volume 257, Number 11, p.6259-67, (1982) AbstractWebsite
n/a
The iron-sulfur centers of the soluble [NiFeSe] hydrogenase, from Desulfovibrio baculatus (DSM 1743). EPR and Mossbauer characterization, Teixeira, M., Moura I., Fauque G., Dervartanian D. V., Legall J., Peck, H. D. Jr., Moura J. J., and Huynh B. H. , Eur J Biochem, Apr 30, Volume 189, Number 2, p.381-6, (1990) AbstractWebsite

The soluble (cytoplasmic plus periplasmic) Ni/Fe-S/Se-containing hydrogenase from Desulfovibrio baculatus (DSM 1743) was purified from cells grown in an 57Fe-enriched medium, and its iron-sulfur centers were extensively characterized by Mossbauer and EPR spectroscopies. The data analysis excludes the presence of a [3Fe-4S] center, either in the native (as isolated) or in the hydrogen-reduced states. In the native state, the non-heme iron atoms are arranged as two diamagnetic [4Fe-4S]2+ centers. Upon reduction, these two centers exhibit distinct and unusual Mossbauer spectroscopic parameters. The centers were found to have similar mid-point potentials (approximately -315 mV) as determined by oxidation-reduction titratins followed by EPR.

Isolation and characterisation of a novel sulphate-reducing bacterium of the Desulfovibrio genus, Feio, M. J., Beech I. B., Carepo M., Lopes J. M., Cheung C. W., Franco R., Guezennec J., Smith J. R., Mitchell J. I., Moura J. J., and Lino A. R. , Anaerobe, Apr, Volume 4, Number 2, p.117-30, (1998) AbstractWebsite

A novel sulphate-reducing bacterium (Ind 1) was isolated from a biofilm removed from a severely corroded carbon steel structure in a marine environment. Light microscopy observations revealed that cells were Gram-negative, rod shaped and very motile. Partial 16S rRNA gene sequencing and analysis of the fatty acid profile demonstrated a strong similarity between the new species and members from the Desulfovibrio genus. This was confirmed by the results obtained following purification and characterisation of the key proteins involved in the sulphate-reduction pathway. Several metal-containing proteins, such as two periplasmic proteins: hydrogenase and cytochrome c3, and two cytoplasmic proteins: ferredoxin and sulphite reductase, were isolated and purified. The latter proved to be of the desulfoviridin type which is typical of the Desulfovibrio genus. The study of the remaining proteins revealed a high degree of similarity with the homologous proteins isolated from Desulfovibrio gigas. However, the position of the strain within the phylogenetic tree clearly indicates that the bacterium is closely related to Desulfovibrio gabonensis, and these three strains form a separate cluster in the delta subdivision of the Proteobacteria. On the basis of the results obtained, it is suggested that Ind 1 belongs to a new species of the genus Desulfovibrio, and the name Desulfovibrio indonensis is proposed.

Isolation and characterization of a rubredoxin and a flavodoxin from Desulfovibrio desulfuricans Berre-Eau, Fauque, Guy D., Moura Isabel, Moura José J. G., Xavier António V., Galliano Nicole, and Legall Jean , Febs Letters, Volume 215, Number 1, p.63-67, (1987) AbstractWebsite
n/a
Isolation and characterization of a rubredoxin and an (8Fe-8S) ferredoxin from Desulfuromonas acetoxidans, Probst, I., Moura J. J., Moura I., Bruschi M., and Legall J. , Biochim Biophys Acta, Apr 11, Volume 502, Number 1, p.38-44, (1978) AbstractWebsite

A two cluster (4Fe-4S) ferredoxin and a rubredoxin have been isolated from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Their amino acid compositions are reported and compared to those of other iron-sulfur proteins. The ferredoxin contains 8 cysteine residues, 8 atoms of iron and 8 atoms of labile sulfur per molecule; its minimum molecular weight is 6163. The protein exhibits an abosrbance ratio of A385/A283 = 0.74. Storage results in a bleaching of the chromophore; the denatured ferredoxin is reconstitutable with iron and sulfide. The instability temperature is 52 degrees C. The rubredoxin does not differ markedly from rubredoxins from other anaerobic bacteria.

The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774. Re-evaluation of the spectroscopic data and redox properties, Almeida, M. G., Macieira S., Goncalves L. L., Huber R., Cunha C. A., Romao M. J., Costa C., Lampreia J., Moura J. J., and Moura I. , Eur J Biochem, Oct, Volume 270, Number 19, p.3904-15, (2003) AbstractWebsite

The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH, respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS. The amino-acid sequence and biochemical subunits characterization show that NrfA contains five hemes and NrfH four hemes. These considerations enabled the revision of a vast amount of existing spectroscopic data on the NrfHA complex that was not originally well interpreted due to the lack of knowledge on the heme content and the oligomeric enzyme status. Based on EPR and Mossbauer parameters and their correlation to structural information recently obtained from X-ray crystallography on the NrfA structure [Cunha, C.A., Macieira, S., Dias, J.M., Almeida, M.G., Goncalves, L.M.L., Costa, C., Lampreia, J., Huber, R., Moura, J.J.G., Moura, I. & Romao, M. (2003) J. Biol. Chem. 278, 17455-17465], we propose the full assignment of midpoint reduction potentials values to the individual hemes. NrfA contains the high-spin catalytic site (-80 mV) as well as a quite unusual high reduction potential (+150 mV)/low-spin bis-His coordinated heme, considered to be the site where electrons enter. In addition, the reassessment of the spectroscopic data allowed the first partial spectroscopic characterization of the NrfH subunit. The four NrfH hemes are all in a low-spin state (S = 1/2). One of them has a gmax at 3.55, characteristic of bis-histidinyl iron ligands in a noncoplanar arrangement, and has a positive reduction potential.

Isolation and characterization of desulforedoxin, a new type of non-heme iron protein from Desulfovibrio gigas, Moura, I., Bruschi M., Legall J., Moura J. J., and Xavier A. V. , Biochem Biophys Res Commun, Apr 25, Volume 75, Number 4, p.1037-44, (1977) AbstractWebsite
n/a
Isolation and characterization of rubrerythrin, a non-heme iron protein from Desulfovibrio vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron cluster, Legall, J., Prickril B. C., Moura I., Xavier A. V., Moura J. J., and Huynh B. H. , Biochemistry, Mar 8, Volume 27, Number 5, p.1636-42, (1988) AbstractWebsite

A new non-heme iron protein from the periplasmic fraction of Desulfovibrio vulgaris (Hildenbourough NCIB 8303) has been purified to homogeneity, and its amino acid composition, molecular weight, redox potential, iron content, and optical, EPR, and Mossbauer spectroscopic properties have been determined. This new protein is composed of two identical subunits with subunit molecular weight of 21,900 and contains four iron atoms per molecule. The as-purified oxidized protein exhibits an optical spectrum with absorption maxima at 492, 365, and 280 nm, and its EPR spectrum shows resonances at g = 4.3 and 9.4, characteristic of oxidized rubredoxin. The Mossbauer data indicate the presence of approximately equal amounts of two types of iron; we named them the Rd-like and the Hr-like iron due to their similarity to the iron centers of rubredoxins (Rds) and hemerythrins (Hrs), respectively. For the Rd-like iron, the measured fine and hyperfine parameters (D = 1.5 cm-1, E/D = 0.26, delta EQ = -0.55 mm/s, delta = 0.27 mm/s, Axx/gn beta n = -16.5 T, Ayy/gn beta n = -15.6 T, and Azz/gn beta n = -17.0 T) are almost identical with those obtained for the rubredoxin from Clostridium pasteurianum. Redox-titration studies monitored by EPR, however, showed that these Rd-like centers have a midpoint redox potential of +230 +/- 10 mV, approximately 250 mV more positive than those reported for rubredoxins. Another unusual feature of this protein is the presence of the Hr-like iron atoms.(ABSTRACT TRUNCATED AT 250 WORDS)

Isolation and preliminary characterization of a soluble nitrate reductase from the sulfate reducing organism Desulfovibrio desulfuricans ATCC 27774, Bursakov, S., Liu M. Y., Payne W. J., Legall J., Moura I., and Moura J. J. , Anaerobe, Feb, Volume 1, Number 1, p.55-60, (1995) AbstractWebsite

Desulfovibrio desulfuricans ATCC 27774 is a sulfate reducer that can adapt to nitrate respiration, inducing the enzymes required to utilize this alternative metabolic pathway. Nitrite reductase from this organism has been previously isolated and characterized, but no information was available on the enzyme involved in the reduction of nitrate. This is the first report of purification to homogeneity of a nitrate reductase from a sulfate reducing organism, thus completing the enzymatic system required to convert nitrate (through nitrite) to ammonia. D. desulfuricans nitrate reductase is a monomeric (circa 70 kDa) periplasmic enzyme with a specific activity of 5.4 K(m) for nitrate was estimated to be 20 microM. EPR signals due to one [4Fe-4S] cluster and Mo(V) were identified in dithionite reduced samples and in the presence of nitrate.

Isolation of P590 from Methanosarcina barkeri: evidence for the presence of sulfite reductase activity, Moura, J. J., Moura I., Santos H., Xavier A. V., Scandellari M., and Legall J. , Biochem Biophys Res Commun, Oct 15, Volume 108, Number 3, p.1002-9, (1982) AbstractWebsite
n/a
K
Kinetic behavior of Desulfovibrio gigas aldehyde oxidoreductase encapsulated in reverse micelles, Andrade, S. L., Brondino C. D., Kamenskaya E. O., Levashov A. V., and Moura J. J. , Biochem Biophys Res Commun, Aug 15, Volume 308, Number 1, p.73-8, (2003) AbstractWebsite

We report the kinetic behavior of the enzyme aldehyde oxidoreductase (AOR) from the sulfate reducing bacterium Desulfovibrio gigas (Dg) encapsulated in reverse micelles of sodium bis-(2-ethylhexyl) sulfosuccinate in isooctane using benzaldehyde, octaldehyde, and decylaldehyde as substrates. Dg AOR is a 200-kDa homodimeric protein that catalyzes the conversion of aldehydes to carboxylic acids. Ultrasedimentation analysis of Dg AOR-containing micelles showed the presence of 100-kDa molecular weight species, confirming that the Dg AOR subunits can be dissociated. UV-visible spectra of encapsulated Dg AOR are indistinguishable from the enzyme spectrum in solution, suggesting that both protein fold and metal cofactor are kept intact upon encapsulation. The catalytic constant (k(cat)) profile as a function of the micelle size W(0) (W(0)=[H(2)O]/[AOT]) using benzaldehyde as substrate showed two bell-shaped activity peaks at W(0)=20 and 26. Furthermore, enzymatic activity for octaldehyde and decylaldehyde was detected only in reverse micelles. Like for the benzaldehyde kinetics, two peaks with both similar k(cat) values and W(0) positions were obtained. EPR studies using spin-labeled reverse micelles indicated that octaldehyde and benzaldehyde are intercalated in the micelle membrane. This suggests that, though Dg AOR is found in the cytoplasm of bacterial cells, the enzyme may catalyze the reaction of substrates incorporated into a cell membrane.

Kinetic studies on the electron-transfer reaction between cytochrome c3 and flavodoxin from Desulfovibrio vulgaris strain Hildenborough, De Francesco, R., Edmondson D. E., Moura I., Moura J. J., and Legall J. , Biochemistry, Aug 30, Volume 33, Number 34, p.10386-92, (1994) AbstractWebsite

The kinetic properties of the electron-transfer process between reduced Desulfovibrio vulgaris cytochrome c3 and D. vulgaris flavodoxin have been studied by anaerobic stopped-flow techniques. Anaerobic titrations of reduced cytochrome c3 with oxidized flavodoxin show a stoichiometry of 4 mol of flavodoxin required to oxidize the tetraheme cytochrome. Flavodoxin neutral semiquinone and oxidized cytochrome c3 are the only observable products of the reaction. At pH 7.5, the four-electron-transfer reaction is biphasic. Both the rapid and the slow phases exhibit limiting rates as the flavodoxin concentration is increased with respective rates of 73.4 and 18.5 s-1 and respective Kd values of 65.9 +/- 9.4 microM and 54.5 +/- 13 microM. A biphasic electron-transfer rate is observed when the ionic strength is increased to 100 mM KCl; however, the observed rate is no longer saturable, and relative second-order rate constants of 5.3 x 10(5) and 8.5 x 10(4) M-1 s-1 are calculated. The magnitude of the rapid phase of electron transfer diminishes with the level of heme reduction when varying reduced levels of the cytochrome are mixed with oxidized flavodoxin. No rapid phase is observed when 0.66e(-)-reduced cytochrome c3 reacts with an approximately 25-fold molar excess of flavodoxin. At pH 6.0, the electron-transfer reaction is monophasic with a limiting rate of 42 +/- 1.4 s-1 and a Kd value of approximately 8 microM. Increasing the ionic strength of the pH 6.0 solution to 100 microM KCl results in a biphasic reaction with relative second-order rate constants of 5.3 x 10(5) and 1.1 x 10(4) M-1 s-1. Azotobacter vinelandii flavodoxin reacts with reduced D. vulgaris cytochrome c3 in a slow, monophasic manner with limiting rate of electron transfer of 1.2 +/- 0.06 s-1 and a Kd value of 80.9 +/- 10.7 microM. These results are discussed in terms of two equilibrium conformational states for the cytochrome which are dependent on the pH of the medium and the level of heme reduction [Catarino et al. (1991) Eur. J. Biochem. 207, 1107-1113].

Kinetic-Studies On The Electron-Transfer Reaction Between Cytochrome-C(3) And Flavodoxin From Desulfovibrio-vulgaris Strain Hildenborough, De Francesco, R., Edmondson D. E., Moura I., Moura J. J. G., and Legall J. , Biochemistry, Aug 30, Volume 33, Number 34, p.10386-10392, (1994) AbstractWebsite

The kinetic properties of the electron-transfer process between reduced Desulfovibrio vulgaris cytochrome c(3) and D. vulgaris flavodoxin have been studied by anaerobic stopped-flow techniques. Anaerobic titrations of reduced cytochrome c(3) with oxidized flavodoxin show a stoichiometry of 4 mol of flavodoxin required to oxidize the tetraheme cytochrome. Flavodoxin neutral semiquinone and oxidized cytochrome c(3) are the only observable products of the reaction. At pH 7.5, the four-electron-transfer reaction is biphasic. Both the rapid and the slow phases exhibit limiting rates as the flavodoxin concentration is increased with respective rates of 73.4 and 18.5 s(-1) and respective K-d values of 65.9 +/- 9.4 mu M and 54.5 +/- 13 CIM. A biphasic electron-transfer rate is observed when the ionic strength is increased to 100 mM KCl; however, the observed rate is no longer saturable, and relative second-order rate constants of 5.3 X 10(5) and 8.5 x 10(4) M(-1) s(-1) are calculated. The magnitude of the rapid phase of electron transfer diminishes with the level of heme reduction when varying reduced levels of the cytochrome are mixed with oxidized flavodoxin. No rapid phase is observed when 0.66e(-)-reduced cytochrome c(3) reacts with an similar to 25-fold molar excess of flavodoxin. At pH 6.0, the electron-transfer reaction is monophasic with a limiting rate of 42 +/- 1.4 s(-1) and a Kd value of similar to 8 mu M. Increasing the ionic strength of the pH 6.0 solution to 100 mu M KCl results in a biphasic reaction with relative second-order rate constants of 5.3 x 10(5) and 1.1 x 10(4) M(-1) s(-1) Azotobacter vinelandii flavodoxin reacts with reduced D. vulgaris cytochrome cs in a slow, monophasic manner with limiting rate of electron transfer of 1.2 +/- 0.06 s(-1) and a K-d value of 80.9 +/- 10.7 mu M. These results are discussed in terms of two equilibrium conformational states for the cytochrome which are dependent on the pH of the medium and the level of heme reduction [Catarino et al. (1991) Eur. J. Biochem. 207, 1107-1113].

Kinetics of inter- and intramolecular electron transfer of Pseudomonas nautica cytochrome cd1 nitrite reductase: regulation of the NO-bound end product, Lopes, H., Besson S., Moura I., and Moura J. J. , J Biol Inorg Chem, Jan, Volume 6, Number 1, p.55-62, (2001) AbstractWebsite

The intermolecular electron transfer kinetics between nitrite reductase (NiR, cytochrome cd1) isolated from Pseudomonas nautica and three cytochromes c isolated from the same strain, as well as the intramolecular electron transfer between NiR heme c and NiR heme d1, were investigated by cyclic voltammetry. All cytochromes (cytochrome c552, cytochrome c553 and cytochrome C553(548)) exhibited well-behaved electrochemistry. The individual diffusion coefficients and mid-point redox potentials were determined. Under the experimental conditions, only cytochrome c552 established a rapid electron transfer with NiR. At acidic pH, the intermolecular electron transfer (cytochrome c(552red)-->NiR heme cox) is a second-order reaction with a rate constant (k2) of 4.1+/-0.1x10(5) M(-1) s(-1) (pH=6.3 and 100 mM NaCl). Under these conditions, the intermolecular reaction represents the rate-limiting step. A minimum estimate of 33 s(-1) could be determined for the first-order rate constant (k1) of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox. The pH dependence of k2 values was investigated at pH values ranging from 5.8 to 8.0. When the pH is progressively shifted towards basic values, the rate constant of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox decreases gradually to a point where it becomes rate limiting. At pH 8.0 we determined a value of 1.4+/-0.7 s(-1), corresponding to a k2 value of 2.2+/-1.1x10(4) M(-1) s(-1) for the intermolecular step. The physiological relevance of these results is discussed with a particular emphasis on the proposed mechanism of "dead-end product" formation.

L
Low-spin sulfite reductases: a new homologous group of non-heme iron-siroheme proteins in anaerobic bacteria, Moura, I., Lino A. R., Moura J. J., Xavier A. V., Fauque G., Peck, H. D. Jr., and Legall J. , Biochem Biophys Res Commun, Dec 30, Volume 141, Number 3, p.1032-41, (1986) AbstractWebsite

Two new low molecular weight proteins with sulfite reductase activity, isolated from Methanosarcina barkeri (DSM 800) and Desulfuromonas acetoxidans (strain 5071), were studied by EPR and optical spectroscopic techniques. Both proteins have visible spectra similar to that of the low-spin sulfite reductase of Desulfovibrio vulgaris strain Hildenborough and no band at 715 nm, characteristic of high-spin Fe3+ complexes in isobacteriochlorins is observed. EPR shows that as isolated the siroheme is in a low-spin ferric state (S = 1/2) with g-values at 2.40, 2.30 and 1.88 for the Methanosarcina barkeri enzyme and g-values at 2.44, 2.33 and 1.81 for the Desulfuromonas acetoxidans enzyme. Chemical analysis shows that both proteins contain one siroheme and one [Fe4S4] center per polypeptidic chain. These results suggest that the low molecular weight, low-spin non-heme iron siroheme proteins represent a new homologous class of sulfite reductases common to anaerobic microorganisms.

M
Mammalian ferrochelatase, a new addition to the metalloenzyme family, Ferreira, G. C., Franco R., Lloyd S. G., Pereira A. S., Moura I., Moura J. J., and Huynh B. H. , J Biol Chem, Mar 11, Volume 269, Number 10, p.7062-5, (1994) AbstractWebsite

A [2Fe-2S] cluster has been detected in mammalian ferrochelatase, the terminal enzyme of the heme biosynthetic pathway. Natural ferrochelatase, purified from mouse livers, and recombinant ferrochelatase, purified from an overproducing strain of Escherichia coli, were investigated by electron paramagnetic resonance (EPR) and Mossbauer spectroscopy. In their reduced forms, both the natural and recombinant ferrochelatases exhibited an identical EPR signal with g values (g = 2.00, 1.93, and 1.90) and relaxation properties typical of [2Fe-2S]+ cluster. Mossbauer spectra of the recombinant ferrochelatase, purified from a strain of E. coli cells transformed with a plasmid encoding murine liver ferrochelatase and grown in 57Fe-enriched medium, demonstrated unambiguously that the cluster is a [2Fe-2S] cluster. No change in the cluster oxidation state was observed during catalysis. The putative protein binding site for the Fe-S cluster in mammalian ferrochelatases is absent from the sequences of the bacterial and yeast enzymes, suggesting a possible role of the [2Fe-2S] center in regulation of mammalian ferrochelatases.

Metabolic adaptations induced by long-term fasting in quails, Sartori, D. R., Migliorini R. H., Veiga J. A., Moura J. L., Kettelhut I. C., and Linder C. , Comp Biochem Physiol A Physiol, Jul, Volume 111, Number 3, p.487-93, (1995) AbstractWebsite

After up to 21 days without food, adult male quails (Coturnix coturnix japonica) lost about 45% of the initial body weight (100-150 g). As in naturally fast-adapted and larger birds, three phases were identified during prolonged fasting in quails. Phase I lasted 2-3 days and was characterized by a rapid decrease in the rate of body weight loss and high fat mobilization. Phase II was longer and characterized by a slow and steady decline in the rates of body weight loss and of nitrogen excretion. The third (critical) period was marked by an abrupt increase in the rates of body weight loss and of nitrogen excretion. Despite their small size, the duration of phase II in quails was relatively long, a clear advantage for the study of the relationships between the several metabolic events that occur during this crucial adaptative period. Also, the beginning of phase III could be precisely determined. Changes in blood glucose, plasma FFA and triacylglycerols levels, as well as in liver and carcass lipid content were similar to those found in other species of birds. Therefore, quails seem to be a suitable model to investigate the biochemical mechanisms involved in the metabolic adjustments to prolonged food deprivation in non fasting-adapted birds.

Metal binding to the tetrathiolate motif of desulforedoxin and related polypeptides, Kennedy, M., Yu L., Lima M. J., Ascenso C. S., Czaja C., Moura I., Moura J. J. G., and Rusnak F. , Journal of Biological Inorganic Chemistry, Dec, Volume 3, Number 6, p.643-649, (1998) AbstractWebsite

Desulforedoxin and the N-terminus of desulfoferrodoxin share a 36 amino acid domain containing a (Cys-S)(4) metal binding site. Recombinant forms of desulforedoxin, an N-terminal fragment of desulfoferrodoxin, and two desulforedoxin mutant proteins were reconstituted with Fe3+ Cd2+, and Zn2+ and relative metal ion affinities assessed by proton titrations. Protons compete with metal for protein ligands, a process that can be followed by monitoring the optical spectrum of the metal-protein complex as a function of pH. For all polypeptides, Fe3+ bound with the highest affinity, whereas the affinity of Zn2+ was greater than Cd2+ in desulforedoxin and the N-terminal fragment of desulfoferrodoxin, but this order was reversed in desulforedoxin mutant proteins. Metal binding in both mutants was significantly impaired. Furthermore, the Fe3+ complex of both mutants underwent a time-dependent bleaching process which coincided with increased reactivity of cysteine residues to Ellman's reagent and concomitant metal dissociation. It is hypothesized that this results from an autoredox reaction in which Fe3+ is reduced to Fe2+ with attendant oxidation of ligand thiols.

Metal ion binding of copper(II), zinc(II) and lead(II) to cytochrome C, Simões Gonçalves, M. L. S., Lopes da Conceição A. C., and Moura J. J. G. , Electrochimica Acta, Volume 35, Number 2, p.473-478, (1990) AbstractWebsite
n/a
Molecular cloning and sequence analysis of the gene of the molybdenum-containing aldehyde oxido-reductase of Desulfovibrio gigas. The deduced amino acid sequence shows similarity to xanthine dehydrogenase, Thoenes, U., Flores O. L., Neves A., Devreese B., Van Beeumen J. J., Huber R., Romao M. J., Legall J., Moura J. J., and Rodrigues-Pousada C. , Eur J Biochem, Mar 15, Volume 220, Number 3, p.901-10, (1994) AbstractWebsite

In this report, we describe the isolation of a 4020-bp genomic PstI fragment of Desulfovibrio gigas harboring the aldehyde oxido-reductase gene. The aldehyde oxido-reductase gene spans 2718 bp of genomic DNA and codes for a protein with 906 residues. The protein sequence shows an average 52% (+/- 1.5%) similarity to xanthine dehydrogenase from different organisms. The codon usage of the aldehyde oxidoreductase is almost identical to a calculated codon usage of the Desulfovibrio bacteria.