Publications

Export 30 results:
Sort by: [ Author  (Desc)] Title Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump, Aureliano, M., Tiago T., Gandara R. M., Sousa A., Moderno A., Kaliva M., Salifoglou A., Duarte R. O., and Moura J. J. , J Inorg Biochem, Dec, Volume 99, Number 12, p.2355-61, (2005) AbstractWebsite

Among the biotargets interacting with vanadium is the calcium pump from the sarcoplasmic reticulum (SR). To this end, initial research efforts were launched with two vanadium(V)-citrate complexes, namely (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O and (NH(4))(6)[V(2)O(2)(O(2))(2)(C(6)H(4)O(7))(2)].4H(2)O, potentially capable of interacting with the SR calcium pump by combining kinetic studies with (51)V NMR spectroscopy. Upon dissolution in the reaction medium (concentration range: 4-0.5mM), both vanadium(V):citrate (VC) and peroxovanadium(V):citrate (PVC) complexes are partially converted into vanadate oligomers. A 1mM solution of the PVC complex, containing 184microM of the PVC complex, 94microM oxoperoxovanadium(V) (PV) species, 222microM monomeric (V1), 43microM dimeric (V2) and 53microM tetrameric (V4) species, inhibits Ca(2+) accumulation by 75 %, whereas a solution of the VC complex of the same vanadium concentration, containing 98microM of the VC complex, 263microM monomeric (V1), 64microM dimeric (V2) and 92microM tetrameric (V4) species inhibits the calcium pump activity by 33 %. In contrast, a 1 mM metavanadate solution, containing 460microM monomeric (V1), 90.2microM dimeric (V2) and 80microM tetrameric (V4) species, has no effect on Ca(2+) accumulation. The NMR signals from the VC complex (-548.0ppm), PVC complex (-551.5ppm) and PV (-611.1ppm) are broadened upon SR vesicle addition (2.5mg/ml total protein). The relative order for the half width line broadening of the NMR signals, which reflect the interaction with the protein, was found to be V4>PVC>VC>PV>V2=V1=1, with no effect observed for the V1 and V2 signals. Putting it all together the effects of two vanadium(V)-citrate complexes on the modulation of calcium accumulation and ATP hydrolysis by the SR calcium pump reflected the observed variable reactivity into the nature of key species forming upon dissolution of the title complexes in the reaction media.

Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue, Aureliano, M., Henao F., Tiago T., Duarte R. O., Moura J. J., Baruah B., and Crans D. C. , Inorg Chem, Jul 7, Volume 47, Number 13, p.5677-84, (2008) AbstractWebsite

The general affinity of the sarcoplasmic reticulum (SR) Ca (2+)-ATPase was examined for three different classes of vanadium coordination complexes including a vanadium(V) compound, pyridine-2,6-dicarboxylatodioxovanadium(V) (PDC-V(V)), and two vanadium(IV) compounds, bis(maltolato)oxovanadium(IV) (BMOV), and an analogue of amavadine, bis( N-hydroxylamidoiminodiacetato)vanadium(IV) (HAIDA-V(IV)). The ability of vanadate to act either as a phosphate analogue or as a transition-state analogue with enzymes' catalysis phosphoryl group transfer suggests that vanadium coordination compounds may reveal mechanistic preferences in these classes of enzymes. Two of these compounds investigated, PDC-V(V) and BMOV, were hydrolytically and oxidatively reactive at neutral pH, and one, HAIDA-V(IV), does not hydrolyze, oxidize, or otherwise decompose to a measurable extent during the enzyme assay. The SR Ca (2+)-ATPase was inhibited by all three of these complexes. The relative order of inhibition was PDC-V(V) > BMOV > vanadate > HAIDA-V(IV), and the IC 50 values were 25, 40, 80, and 325 microM, respectively. Because the observed inhibition is more potent for PDC-V(V) and BMOV than that of oxovanadates, the inhibition cannot be explained by oxovanadate formation during enzyme assays. Furthermore, the hydrolytically and redox stable amavadine analogue HAIDA-V(IV) inhibited the Ca (2+)-ATPase less than oxovanadates. To gauge the importance of the lipid environment, studies of oxidized BMOV in microemulsions were performed and showed that this system remained in the aqueous pool even though PDC-V(V) is able to penetrate lipid interfaces. These findings suggest that the hydrolytic properties of these complexes may be important in the inhibition of the calcium pump. Our results show that two simple coordination complexes with known insulin enhancing effects can invoke a response in calcium homeostasis and the regulation of muscle contraction through the SR Ca (2+)-ATPase.

Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6), Auchere, F., Raleiras P., Benson L., Venyaminov S. Y., Tavares P., Moura J. J., Moura I., and Rusnak F. , Inorg Chem, Feb 24, Volume 42, Number 4, p.938-40, (2003) AbstractWebsite

Superoxide reductases catalyze the monovalent reduction of superoxide anion to hydrogen peroxide. Spectroscopic evidence for the formation of a dinuclear cyano-bridged adduct after K(3)Fe(CN)(6) oxidation of the superoxide reductases neelaredoxin from Treponema pallidum and desulfoferrodoxin from Desulfovibrio vulgaris was reported. Oxidation with K(3)Fe(CN)(6) reveals a band in the near-IR with lambda(max) at 1020 nm, coupled with an increase of the iron content by almost 2-fold. Fourier transform infrared spectroscopy provided additional evidence with CN-stretching vibrations at 2095, 2025-2030, and 2047 cm(-)(1), assigned to a ferrocyanide adduct of the enzyme. Interestingly, the low-temperature electronic paramagnetic resonance (EPR) spectra of oxidized TpNlr reveal at least three different species indicating structural heterogeneity in the coordination environment of the active site Fe ion. Given the likely 6-coordinate geometry of the active site Fe(3+) ion in the ferrocyanide adduct, we propose that the rhombic EPR species can serve as a model of a hexacoordinate form of the active site.

Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin, Auchere, F., Sikkink R., Cordas C., Raleiras P., Tavares P., Moura I., and Moura J. J. , J Biol Inorg Chem, Oct, Volume 9, Number 7, p.839-49, (2004) AbstractWebsite

Superoxide reductases are a class of non-haem iron enzymes which catalyse the monovalent reduction of the superoxide anion O2- into hydrogen peroxide and water. Treponema pallidum (Tp), the syphilis spirochete, expresses the gene for a superoxide reductase called neelaredoxin, having the iron protein rubredoxin as the putative electron donor necessary to complete the catalytic cycle. In this work, we present the first cloning, overexpression in Escherichia coli and purification of the Tp rubredoxin. Spectroscopic characterization of this 6 kDa protein allowed us to calculate the molar absorption coefficient of the 490 nm feature of ferric iron, epsilon=6.9+/-0.4 mM(-1) cm(-1). Moreover, the midpoint potential of Tp rubredoxin, determined using a glassy carbon electrode, was -76+/-5 mV. Reduced rubredoxin can be efficiently reoxidized upon addition of Na(2)IrCl(6)-oxidized neelaredoxin, in agreement with a direct electron transfer between the two proteins, with a stoichiometry of the electron transfer reaction of one molecule of oxidized rubredoxin per one molecule of neelaredoxin. In addition, in presence of a steady-state concentration of superoxide anion, the physiological substrate of neelaredoxin, reoxidation of rubredoxin was also observed in presence of catalytic amounts of superoxide reductase, and the rate of rubredoxin reoxidation was shown to be proportional to the concentration of neelaredoxin, in agreement with a bimolecular reaction, with a calculated k(app)=180 min(-1). Interestingly, similar experiments performed with a rubredoxin from the sulfate-reducing bacteria Desulfovibrio vulgaris resulted in a much lower value of k(app)=4.5 min(-1). Altogether, these results demonstrated the existence for a superoxide-mediated electron transfer between rubredoxin and neelaredoxin and confirmed the physiological character of this electron transfer reaction.

Kinetics studies of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and superoxide reductases, Auchere, F., Pauleta S. R., Tavares P., Moura I., and Moura J. J. , J Biol Inorg Chem, Jun, Volume 11, Number 4, p.433-44, (2006) AbstractWebsite

In this work we present a kinetic study of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and members of the three different classes of superoxide reductases (SORs). SORs from the sulfate-reducing bacteria Desulfovibrio vulgaris (Dv) and D. gigas (Dg) were chosen as prototypes of classes I and II, respectively, while SOR from the syphilis spirochete Treponema pallidum (Tp) was representative of class III. Our results show evidence for different behaviors of SORs toward electron acceptance, with a trend to specificity for the electron donor and acceptor from the same organism. Comparison of the different kapp values, 176.9+/-25.0 min(-1) in the case of the Tp/Tp electron transfer, 31.8+/-3.6 min(-1) for the Dg/Dg electron transfer, and 6.9+/-1.3 min(-1) for Dv/Dv, could suggest an adaptation of the superoxide-mediated electron transfer efficiency to various environmental conditions. We also demonstrate that, in Dg, another iron-sulfur protein, a desulforedoxin, is able to transfer electrons to SOR more efficiently than rubredoxin, with a kapp value of 108.8+/-12.0 min(-1), and was then assigned as the potential physiological electron donor in this organism.

Desulfoferrodoxin: a modular protein, Ascenso, C., Rusnak F., Cabrito I., Lima M. J., Naylor S., Moura I., and Moura J. J. , J Biol Inorg Chem, Dec, Volume 5, Number 6, p.720-9, (2000) AbstractWebsite

The gene encoding the non-heme iron-containing desulfoferrodoxin from Desulfovibrio vulgaris was cloned in two fragments in order to obtain polypeptides corresponding to the N- and C-terminal domains observed in the tertiary structure. These fragments were expressed in Escherichia coli, purified to homogeneity and biochemically and spectroscopically characterized. Both recombinant fragments behaved as independent metal-binding domains. The N-terminal fragment exhibited properties similar to desulforedoxin, as expected by the presence of a Fe(S-Cys)4 metal binding motif. The C-terminal fragment, which accommodates a Fe(Nepsilon-His)3(Ndelta-His)(S-Cys) center, was shown to have properties similar to neelaredoxin, except for the reaction with superoxide. The activities of desulfoferrodoxin and of the expressed C-terminal fragment were tested with superoxide in the presence and absence of cytochrome c. The results are consistent with superoxide reductase activity and a possible explanation for the low superoxide consumption in the superoxide dismutase activity assays is proposed.

Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8 A resolution: a novel non-heme iron protein structure, Archer, M., Huber R., Tavares P., Moura I., Moura J. J., Carrondo M. A., Sieker L. C., Legall J., and Romao M. J. , J Mol Biol, Sep 1, Volume 251, Number 5, p.690-702, (1995) AbstractWebsite

The crystal structure of desulforedoxin from Desulfovibrio gigas, a new homo-dimeric (2 x 36 amino acids) non-heme iron protein, has been solved by the SIRAS method using the indium-substituted protein as the single derivative. The structure was refined to a crystallographic R-factor of 16.9% at 1.8 A resolution. Native desulforedoxin crystals were grown from either PEG 4K or lithium sulfate, with cell constants a = b = 42.18 A, c = 72.22 A (for crystals grown from PEG 4K), and they belong to space group P3(2)21. The indium-substituted protein crystallized isomorphously under the same conditions. The 2-fold symmetric dimer is firmly hydrogen bonded and folds as an incomplete beta-barrel with the two iron centers placed on opposite poles of the molecule. Each iron atom is coordinated to four cysteinyl residues in a distorted tetrahedral arrangement. Both iron atoms are 16 A apart but connected across the 2-fold axis by 14 covalent bonds along the polypeptide chain plus two hydrogen bonds. Desulforedoxin and rubredoxin share some structural features but show significant differences in terms of metal environment and water structure, which account for the known spectroscopic differences between rubredoxin and desulforedoxin.

Structural studies by X-ray diffraction on metal substituted desulforedoxin, a rubredoxin-type protein, Archer, M., Carvalho A. L., Teixeira S., Moura I., Moura J. J., Rusnak F., and Romao M. J. , Protein Sci, Jul, Volume 8, Number 7, p.1536-45, (1999) AbstractWebsite

Desulforedoxin (Dx), isolated from the sulfate reducing bacterium Desulfovibrio gigas, is a small homodimeric (2 x 36 amino acids) protein. Each subunit contains a high-spin iron atom tetrahedrally bound to four cysteinyl sulfur atoms, a metal center similar to that found in rubredoxin (Rd) type proteins. The simplicity of the active center in Dx and the possibility of replacing the iron by other metals make this protein an attractive case for the crystallographic analysis of metal-substituted derivatives. This study extends the relevance of Dx to the bioinorganic chemistry field and is important to obtain model compounds that can mimic the four sulfur coordination of metals in biology. Metal replacement experiments were carried out by reconstituting the apoprotein with In3+, Ga3+, Cd2+, Hg2+, and Ni2+ salts. The In3+ and Ga3+ derivatives are isomorphous with the iron native protein; whereas Cd2+, Hg2+, and Ni2+ substituted Dx crystallized under different experimental conditions, yielding two additional crystal morphologies; their structures were determined by the molecular replacement method. A comparison of the three-dimensional structures for all metal derivatives shows that the overall secondary and tertiary structures are maintained, while some differences in metal coordination geometry occur, namely, bond lengths and angles of the metal with the sulfur ligands. These data are discussed in terms of the entatic state theory.

Core dimensions in the 3Fe cluster of Desulfovibrio gigas ferredoxin II by extended X-ray absorption fine structure spectroscopy, Antonio, M. R., Averill B. A., Moura I., Moura J. J., Orme-Johnson W. H., Teo B. K., and Xavier A. V. , J Biol Chem, Jun 25, Volume 257, Number 12, p.6646-9, (1982) AbstractWebsite

We have obtained the iron K-edge extended X-ray adsorption fine structure spectra of the 3Fe ferredoxin II of Desulfovibrio gigas in the oxidized and reduced states. For both states, interpretation of the EXAFS data suggests that the Fe-S first shell coordination distance is near 2.25 A, in agreement with crystallographic studies of model compounds and proteins containing 2Fe-2S and 4Fe-4S centers, as well as with a recent crystallographic study of Azotobacter vinelandii ferredoxin I (Ghosh, D., Furey, W., Jr., O'Donnell, S., and Stout, C. D. (1981) J. Biol. Chem. 256, 4185-4192). The apparent Fe-Fe distance we obtain for the desulfovibrio protein (2.7 A) also agrees with similar distances seen in other Fe-S centers, except with the 3Fe cluster in the Azotobacter vinelandii ferredoxin I structure, for which an Fe-Fe distance of 4.2 A was reported. We conclude that either the two 3Fe ferredoxins have substantially different core dimensions, a possibility apparently unique to 3Fe centers among known Fe-S systems in proteins, or that one (or more) of the structural studies is in substantial error.

Hydrogen evolution and consumption in AOT-isooctane reverse micelles by Desulfovibrio gigas hydrogenase, Andrade, S. L. A., and Moura J. J. G. , Enzyme and Microbial Technology, Sep 2, Volume 31, Number 4, p.398-402, (2002) AbstractWebsite

The enzyme hydrogenase isolated from the sulphate reducing anaerobic bacterium Desulfovibrio gigas was encapsulated in reverse micelles of AOT-water-isooctane. The enzyme ability to consume molecular hydrogen was studied as a function of the micelle size (given by W-o = [H2O]/[organic solvent]). A peak of catalytic activity was obtained for W-o = 18, a micelle size theoretically fitting the heterodimeric hydrogenase molecule. At this W-o value, the recorded catalytic activity was slightly higher than in a buffer system (K-cat = 169.43 s(-1) against the buffer value of 151 s(-1)). The optimal buffer used to encapsulate the enzyme was found to be imidazole 50 mM, pH 9.0, The molecular hydrogen production activity was also tested in this reverse micelle medium. (C) 2002 Elsevier Science Inc. All lights reserved.

Aldehyde oxidoreductase activity in Desulfovibrio alaskensis NCIMB 13491 EPR assignment of the proximal [2Fe-2S] cluster to the Mo site, Andrade, S. L., Brondino C. D., Feio M. J., Moura I., and Moura J. J. , Eur J Biochem, Apr, Volume 267, Number 7, p.2054-61, (2000) AbstractWebsite

A novel molybdenum iron-sulfur-containing aldehyde oxidoreductase (AOR) belonging to the xanthine oxidase family was isolated and characterized from the sulfate-reducing bacterium Desulfovibrio alaskensis NCIMB 13491, a strain isolated from a soured oil reservoir in Purdu Bay, Alaska. D. alaskensis AOR is closely related to other AORs isolated from the Desulfovibrio genus. The protein is a 97-kDa homodimer, with 0.6 +/- 0.1 Mo, 3.6 +/- 0.1 Fe and 0.9 +/- 0.1 pterin cytosine dinucleotides per monomer. The enzyme catalyses the oxidation of aldehydes to their carboxylic acid form, following simple Michaelis-Menten kinetics, with the following parameters (for benzaldehyde): K(app/m)= 6.65 microM; V app = 13.12 microM.min(-1); k(app/cat) = 0.96 s(-1). Three different EPR signals were recorded upon long reduction of the protein with excess dithionite: an almost axial signal split by hyperfine interaction with one proton associated with Mo(V) species and two rhombic signals with EPR parameters and relaxation behavior typical of [2Fe-2S] clusters termed Fe/S I and Fe/S II, respectively. EPR results reveal the existence of magnetic interactions between Mo(V) and one of the Fe/S clusters, as well as between the two Fe/S clusters. Redox titration monitored by EPR yielded midpoint redox potentials of -275 and -325 mV for the Fe/S I and Fe/S II, respectively. The redox potential gap between the two clusters is large enough to obtain differentiated populations of these paramagnetic centers. This fact, together with the observed interactions among paramagnetic centers, was used to assign the EPR-distinguishable Fe/S I and Fe/S II to those seen in the reported crystal structures of homologous enzymes.

Kinetic behavior of Desulfovibrio gigas aldehyde oxidoreductase encapsulated in reverse micelles, Andrade, S. L., Brondino C. D., Kamenskaya E. O., Levashov A. V., and Moura J. J. , Biochem Biophys Res Commun, Aug 15, Volume 308, Number 1, p.73-8, (2003) AbstractWebsite

We report the kinetic behavior of the enzyme aldehyde oxidoreductase (AOR) from the sulfate reducing bacterium Desulfovibrio gigas (Dg) encapsulated in reverse micelles of sodium bis-(2-ethylhexyl) sulfosuccinate in isooctane using benzaldehyde, octaldehyde, and decylaldehyde as substrates. Dg AOR is a 200-kDa homodimeric protein that catalyzes the conversion of aldehydes to carboxylic acids. Ultrasedimentation analysis of Dg AOR-containing micelles showed the presence of 100-kDa molecular weight species, confirming that the Dg AOR subunits can be dissociated. UV-visible spectra of encapsulated Dg AOR are indistinguishable from the enzyme spectrum in solution, suggesting that both protein fold and metal cofactor are kept intact upon encapsulation. The catalytic constant (k(cat)) profile as a function of the micelle size W(0) (W(0)=[H(2)O]/[AOT]) using benzaldehyde as substrate showed two bell-shaped activity peaks at W(0)=20 and 26. Furthermore, enzymatic activity for octaldehyde and decylaldehyde was detected only in reverse micelles. Like for the benzaldehyde kinetics, two peaks with both similar k(cat) values and W(0) positions were obtained. EPR studies using spin-labeled reverse micelles indicated that octaldehyde and benzaldehyde are intercalated in the micelle membrane. This suggests that, though Dg AOR is found in the cytoplasm of bacterial cells, the enzyme may catalyze the reaction of substrates incorporated into a cell membrane.

Encapsulation of flavodoxin in reverse micelles, Andrade, S., Kamenskaya E. O., Levashov A. V., and Moura J. J. , Biochem Biophys Res Commun, May 29, Volume 234, Number 3, p.651-4, (1997) AbstractWebsite

The regulation of the properties of Desulfovibrio gigas flavodoxin in AOT/water/iso-octane micellar system was studied. UV-visible spectroscopic studies have shown that photoreduction of flavodoxin in the presence of EDTA leads to hydroquinone formation through the intermediate semiquinone. The [free FMN] - [bound to flavodoxin FMN] equilibrium (and hence, the amount of apoprotein) depends on redox state of FMN and on hydration degree which controls the micellar size. Thus, a new method of reversible cofactor removing under mild conditions (at low hydration degree of micelles) is suggested, accompained by isolation of apo-form of the protein.

Broad-temperature range spectroscopy of the two-centre modular redox metalloprotein Desulfovibrio desulfuricans desulfoferrodoxin, Andersen, N. H., Harnung S. E., Trabjerg I., Moura I., Moura J. J. G., and Ulstrup J. , Dalton Transactions, Sep 7, Number 17, p.3328-3338, (2003) AbstractWebsite

The electronic-vibrational couplings of the two-centre non-heme iron protein Desulfovibrio desulfuricans desulfoferrodoxin (DFx) in three oxidation states, i.e. fully oxidised (grey), half-oxidised (pink), and fully reduced (colourless), have been investigated by variable temperature (VT) UV/VIS, MCD, CD, and EPR spectroscopy. The UV/VIS spectra of grey DFx at room temperature is characterised by broad charge transfer (CT) transitions associated with oxidised centre 1 (495 and 368 nm) and II (335 and 635 nm). The transitions are resolved at 78 K, substantiated by VT-MCD and -CD. The data offer novel information about the electronic-vibrational couplings of the transitions. Multiphonon bandshape analysis discloses strong contributions from both local Fe-S and S-C stretching and solvent/protein modes. A number of transitions are blue- or red-shifted compared with monomeric desulforedoxin, superoxide reductase or dismutase, and cloned Desulfovibrio vulgaris DFx fragments. Conversion from grey to pink DFx is accompanied by drastic electronic-vibrational changes of both centres. The data suggest that electron transfer and optical CT-transitions of DFx are controlled by environmental reorganization in the whole region between the metal centres.

A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization, Alves, T., Besson S., Duarte L. C., Pettigrew G. W., Girio F. M. F., Devreese B., Vandenberghe I., Van Beeumen J., Fauque G., and Moura I. , Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, Oct 12, Volume 1434, Number 2, p.248-259, (1999) AbstractWebsite

Cytochrome c peroxidase was expressed in cells of Pseudomonas nautica strain 617 grown under microaerophilic conditions. The 36.5 kDa dihaemic enzyme was purified to electrophoretic homogeneity in three chromatographic steps. N-terminal sequence comparison showed that the Ps. nautica enzyme exhibits a high similarity with the corresponding proteins from Paracoccus denitrificans and Pseudomonas aeruginosa. UV-visible spectra confirm calcium activation of the enzyme through spin state transition of the peroxidatic haem. Monohaemic cytochrome c(552) from Ps. nautica was identified as the physiological electron donor, with a half-saturating concentration of 122 mu M and allowing a maximal catalytic centre activity of 116 000 min(-1). Using this cytochrome the enzyme retained the same activity even at high ionic strength. There are indications that the interactions between the two redox partners are mainly hydrophobic in nature. (C) 1999 Elsevier Science B.V. All rights reserved.

Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas, Almendra, M. J., Brondino C. D., Gavel O., Pereira A. S., Tavares P., Bursakov S., Duarte R., Caldeira J., Moura J. J., and Moura I. , Biochemistry, Dec 7, Volume 38, Number 49, p.16366-72, (1999) AbstractWebsite

An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein. Selenium was not detected. The UV/visible absorption spectrum of D. gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mossbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with (57)Fe and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.

Biossensores: Modernas Ferramentas para Monitorização e Controlo Analítico, Almeida, M. G. , Bol. Biotecnol. , Volume 79, p.12-23, (2004) Abstract
n/a
The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774. Re-evaluation of the spectroscopic data and redox properties, Almeida, M. G., Macieira S., Goncalves L. L., Huber R., Cunha C. A., Romao M. J., Costa C., Lampreia J., Moura J. J., and Moura I. , Eur J Biochem, Oct, Volume 270, Number 19, p.3904-15, (2003) AbstractWebsite

The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH, respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS. The amino-acid sequence and biochemical subunits characterization show that NrfA contains five hemes and NrfH four hemes. These considerations enabled the revision of a vast amount of existing spectroscopic data on the NrfHA complex that was not originally well interpreted due to the lack of knowledge on the heme content and the oligomeric enzyme status. Based on EPR and Mossbauer parameters and their correlation to structural information recently obtained from X-ray crystallography on the NrfA structure [Cunha, C.A., Macieira, S., Dias, J.M., Almeida, M.G., Goncalves, L.M.L., Costa, C., Lampreia, J., Huber, R., Moura, J.J.G., Moura, I. & Romao, M. (2003) J. Biol. Chem. 278, 17455-17465], we propose the full assignment of midpoint reduction potentials values to the individual hemes. NrfA contains the high-spin catalytic site (-80 mV) as well as a quite unusual high reduction potential (+150 mV)/low-spin bis-His coordinated heme, considered to be the site where electrons enter. In addition, the reassessment of the spectroscopic data allowed the first partial spectroscopic characterization of the NrfH subunit. The four NrfH hemes are all in a low-spin state (S = 1/2). One of them has a gmax at 3.55, characteristic of bis-histidinyl iron ligands in a noncoplanar arrangement, and has a positive reduction potential.

Electron transfer and molecular recognition in denitrification and nitrate dissimilatory pathways, Almeida, R. M., Dell'Acqua S., Moura I., Pauleta S. R., and Moura J. J. G. , Metalloenzymes in Denitrification: Applications and Environmental Impacts, RSC Metallobiology Series No. 9 (ISBN: 978-1-78262-376-2)., p.252-286, (2017)
Biosensing nitrite using the system nitrite redutase/Nafion/methyl viologen--a voltammetric study, Almeida, M. G., Silveira C. M., and Moura J. J. , Biosens Bioelectron, May 15, Volume 22, Number 11, p.2485-92, (2007) AbstractWebsite

This work describes the construction and voltammetric characterization of a nitrite biosensor based on a cytochrome c-type nitrite reductase (ccNiR) and the Nafion ionomeric matrix loaded with methyl viologen as redox mediator. Despite the potential electrostatic repulsions between the anionic substrate and the Nafion sulfonate groups, the resulting bioelectrode exhibited electrocatalytic activity toward nitrite. This phenomenon must be due to the nonuniformity of the enzyme/Nafion membrane, which allows the direct interaction between the substrate and numerous enzyme molecules. Nevertheless, the anionic nature of Nafion exerted a certain diffusion barrier to nitrite, as revealed by the unusually elevated limits of the linear dynamic range and k(m)(app). The irregularity of the composite membrane also contributed to slow down the rate of charge transfer throughout the Nafion polymer. The level of viologens incorporated within the Nafion membrane had a strong influence in the analytical parameters: as much mediator was present, lower was the sensitivity and wider was the linear range. For an optimized ratio enzyme/mediator the sensitivity was 445+/-8 mA M(-1)cm(-2), within the linear range 75-800 microM; the lowest detected nitrite concentration was 60 microM. The operational stability of the biosensor and the influence of some possible interferences were evaluated.

Superoxide reductase: different interaction modes with its two redox partners, Almeida, R. A., Turano P., Moura I., Moura J. J. G., and Pauleta S. R. , ChemBioChem, Volume 14, p.1858–1866, (2013)
Rubredoxin as a paramagnetic relaxation-inducing probe, Almeida, R. M., Pauleta S. R., Moura I., and Moura J. J. , J Inorg Biochem, Sep, Volume 103, Number 9, p.1245-53, (2009) AbstractWebsite

The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with unpaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c(3) was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M2(1) and M18(1). The rubredoxin binding surface in the complex with cytochrome c(3) was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c(3) are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in (1)HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes.

Construção de um Bio-Eléctrodo Específico para Determinação de Nitritos, Almeida, M. G., Tavares P., and Moura J. J. G. , Bol. Soc. Port. Química, Volume 84, p.68-71, (2002) Abstract
n/a
A needle in a haystack: the active site of the membrane-bound complex cytochrome c nitrite reductase, Almeida, M. G., Silveira C. M., Guigliarelli B., Bertrand P., Moura J. J., Moura I., and Leger C. , FEBS Lett, Jan 23, Volume 581, Number 2, p.284-8, (2007) AbstractWebsite

Cytochrome c nitrite reductase is a multicenter enzyme that uses a five-coordinated heme to perform the six-electron reduction of nitrite to ammonium. In the sulfate reducing bacterium Desulfovibrio desulfuricans ATCC 27774, the enzyme is purified as a NrfA2NrfH complex that houses 14 hemes. The number of closely-spaced hemes in this enzyme and the magnetic interactions between them make it very difficult to study the active site by using traditional spectroscopic approaches such as EPR or UV-Vis. Here, we use both catalytic and non-catalytic protein film voltammetry to simply and unambiguously determine the reduction potential of the catalytic heme over a wide range of pH and we demonstrate that proton transfer is coupled to electron transfer at the active site.

Predicting Protein-Protein Interactions Using BiGGER: Case Studies, Almeida, R. M., Dell'Acqua S., Krippahl L., Moura J. J. G., and Pauleta S. R. , Molecules, Volume 21, p.1037, (2016) Website