Export 4172 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Palomar, T, Chabas A, Bastidas DM, de la Fuente D, Verney-Carron A.  2017.  Effect of marine aerosols on the alteration of silicate glasses, 2017. Journal of Non-Crystalline Solids. 471:328-337. AbstractWebsite
n/a
Delgado, JM, Nunes D, Fortunato E, Laia CAT, Branco LC, Vilarigues M.  2017.  The effect of three luminescent ionic liquids on corroded glass surfaces - A first step into stained-glass cleaning, 2017. Corrosion Science. 118:109-117. AbstractWebsite
n/a
Delgado, JM, Nunes D, Fortunato E, Laia CAT, Branco LC, Vilarigues M.  2017.  The effect of three luminescent ionic liquids on corroded glass surfaces – A first step into stained-glass cleaning, 2017. Corrosion Science. 118:109-117. AbstractWebsite
n/a
Aguilo, E, Soler L, Casanovas A, Moro AJ, Lima JC, Rodriguez L, Llorca J.  2017.  Gold(I)-Complex-Titania Hybrid Photocatalyst for Hydrogen Production, 2017. Chemcatchem. 9(17):3289-3292. AbstractWebsite
n/a
do Nascimento-Neto, LG, Cabral MG, Carneiro RF, Silva Z, Arruda FVS, Nagano CS, Fernandes AR, Sampaio AH, and Videira* EHT* PA.  2017.  Halilectin-3, a Lectin from the Marine Sponge Haliclona caerulea, Induces Apoptosis and Autophagy in Human Breast Cancer MCF7 Cells Through Caspase-9 Pathway and LC3-II Protein Expression, 2017. (Formerly Current Medicinal Chemistry - Anti-Cancer Agents). 17:1-8. Abstract

Background: An ideal strategy for cancer treatment is the specific induction of tumor cell death, sparing normal cells. Marine sponges are rich biological reservoirs of biomolecules, especially lectins, which have attracted considerable attention due to potential biological effect on human cells. Lectins are proteins that bind specific carbohydrate signatures and some gained further interest for their capacity to bind tumor associated carbohydrates antigens and induce tumor cell apoptosis. Objective: This study aimed to evaluate the antitumor potential of H3, a lectin, recently reported from marine sponge Haliclona caerulea on the human breast cancer cell line MCF7. Results: H3 reduced MCF7 cell viability with an IC50 of 100 μg/ml, without a significant effect on normal cells. At 24h, H3 induced a significant arrest in the G1 cell cycle phase. Consistently, almost 50% of the cells were in early apoptosis and showed remarkable increased expression of caspase-9 (CASP 9). H3 impaired dramatically the adhesiveness of MCF7 cells in culture. Assays conducted with Lysotracker Red probe showed increased organelle acidity, suggesting autophagic cell death, which was further supported by increased expression of microtubule-associated protein light chain 3 (LC3) and observable conversion of LC3-I in LC3-II by western blot. Conclusion: The apoptotic effect of H3 may be related to a balance between apoptotic and autophagic cell death, mediated by increased expression of CASP 9 and LC3-II. To the best of our knowledge this is the first report about a sponge lectin triggering both apoptosis and autophagy in MCF7 cell.

Silva, PES, Godinho MH.  2017.  Helical Microfilaments with Alternating Imprinted Intrinsic Curvatures, 2017. Macromolecular Rapid CommunicationsMacromolecular Rapid Communications. 38(5):1600700.: John Wiley & Sons, Ltd AbstractWebsite

There has been an intense research for developing techniques that can produce filaments with helical shapes, given the widespread of potential applications. In this work, how helices with different curvatures can be precisely imprinted in microfilaments is shown. It is also shown that using this technique, it is possible to produce, in a single fiber, helices with different curvatures. This striking and innovative behavior is observed when one side of the stretched filaments is irradiated with UV light, modifying the mechanical properties at surface. Upon release, the regions with higher curvature start to curl first, while regions with lower intrinsic curvature remain stretched until start to curl later. The results presented here can be important to understand why structures adopt a helical shape in general, which can be of interest in nanotechnology, biomolecular science, or even to understand why plant filaments curl.

Pessego, M, Gago S, Basilio N, Laia CAT, Parola AJ, Lima JC, Pina F.  2017.  Hiding and unveiling trans-chalcone in a constrained derivative of 4 ',7-dihydroxyflavylium in water: a versatile photochromic system, 2017. Organic & Biomolecular Chemistry. 15(2):338-347. AbstractWebsite
n/a
Otrelo-Cardoso, AR, Nair RR, Correia MAS, Cordeiro RCS, Panjkovich A, Svergun DI, Santos-Silva T, Rivas MG.  2017.  Highly selective tungstate transporter protein TupA from Desulfovibrio alaskensis G20, 2017. Scientific Reports. 7(1):5798. AbstractWebsite

Molybdenum and tungsten are taken up by bacteria and archaea as their soluble oxyanions through high affinity transport systems belonging to the ATP-binding cassette (ABC) transporters. The component A (ModA/TupA) of these transporters is the first selection gate from which the cell differentiates between MoO4 2−, WO4 2− and other similar oxyanions. We report the biochemical characterization and the crystal structure of the apo-TupA from Desulfovibrio desulfuricans G20, at 1.4 Å resolution. Small Angle X-ray Scattering data suggests that the protein adopts a closed and more stable conformation upon ion binding. The role of the arginine 118 in the selectivity of the oxyanion was also investigated and three mutants were constructed: R118K, R118E and R118Q. Isothermal titration calorimetry clearly shows the relevance of this residue for metal discrimination and oxyanion binding. In this sense, the three variants lost the ability to coordinate molybdate and the R118K mutant keeps an extremely high affinity for tungstate. These results contribute to an understanding of the metal-protein interaction, making it a suitable candidate for a recognition element of a biosensor for tungsten detection.

Oliveira, J, Araujo P, Fernandes A, Bras NF, Mateus N, Pina F, de Freitas V.  2017.  Influence of the structural features of amino-based pyranoanthocyanins on their acid-base equilibria in aqueous solutions, 2017. Dyes and Pigments. 141:479-486. AbstractWebsite
n/a
Polino, M, Carvalho AL, Juknaitė L, Portugal CAM, Coelhoso IM, Romão MJ, Crespo JG.  2017.  Ion-Exchange Membranes for Stable Derivatization of Protein Crystals, 2017. Crystal Growth & DesignCrystal Growth & Design. : American Chemical Society AbstractWebsite
n/a
Lavande, N, Acuna A, Basilio N, Francisco V, Malkhede DD, Garcia-Rio L.  2017.  A journey from calix 4 arene to calix 6 and calix 8 arene reveals more than a matter of size. Receptor concentration affects the stability and stoichiometric nature of the complexes, 2017. Physical Chemistry Chemical Physics. 19(21):13640-13649. AbstractWebsite
n/a
Martins, ICB, Oliveira MC, Diogo HP, Branco LC, Duarte MT.  2017.  MechanoAPI-ILs: Pharmaceutical Ionic Liquids Obtained through Mechanochemical Synthesis, 2017. Chemsuschem. 10(7):1360-1363. AbstractWebsite
n/a
Fernandes, SN, Almeida PL, Monge N, Aguirre LE, Reis D, de Oliveira CLP, Neto AMF, Pieranski P, Godinho MH.  2017.  Mind the Microgap in Iridescent Cellulose Nanocrystal Films, 2017. Advanced MaterialsAdvanced Materials. 29(2):1603560.: John Wiley & Sons, Ltd AbstractWebsite

A new photonic structure is produced from cellulose nanocrystal iridescent films reflecting both right and left circularly polarized light. Micrometer-scale planar gaps perpendicular to the films' cross-section between two different left-handed films' cholesteric domains are impregnated with a nematic liquid crystal. This photonic feature is reversibly tuned by the application of an electric field or a temperature variation.

Sutradhar, M, Rajeshwari, Roy Barman T, Fernandes AR, Paradinha F, Roma-Rodrigues C, Guedes da Silva FMC, Pombeiro AJL.  2017.  Mixed ligand aroylhydrazone and N-donor heterocyclic Lewis base Cu(II) complexes as potential antiproliferative agents, 2017. 175:267-275. AbstractWebsite

A series of four mixed ligand aroylhydrazone and N-donor heterocyclic Lewis base Cu(II) complexes [CuL(X)]2 [L refers to the dianionic form of (5-bromo-2-hydroxybenzylidene)-2-hydroxybenzohydrazide; X=pyrazine (Pz; 1), pyridine (Py; 2), imidazole (Imz; 3) and 3-pyridinecarbonitrile (3-PyCN; 4)] has been synthesized and characterized by elemental analysis, various spectroscopic techniques and X-ray crystallography (for 1, 2 and 4). The antiproliferative effect of complexes 1–4 was examined in 4 human tumor cell lines (ovarian carcinoma (A2780), colorectal carcinoma (HCT116), lung adenocarcinoma (A549) and breast adenocarcinoma (MCF7)) and in normal human primary Fibroblasts. Complex 4 exhibits a high cytotoxic activity against ovarian and colorectal carcinoma cells (A2780, HCT116 respectively), with IC50 much lower than those for normal primary fibroblasts. Complex 4 could induce cell death via apoptosis but not autophagy in colorectal carcinoma cells.

Vinhas, R, Mendes R, Fernandes AR, Baptista PV.  2017.  Nanoparticles—Emerging Potential for Managing Leukemia and Lymphoma, 2017. 5:79. AbstractWebsite

Nanotechnology has become a powerful approach to improve the way we diagnose and treat cancer. In particular, nanoparticles possess unique features for enhanced sensitivity and selectivity for earlier detection of circulating cancer biomarkers. In vivo, nanoparticles enhance the therapeutic efficacy of anticancer agents when compared to conventional chemotherapy, improving vectorization and delivery, and helping to overcome drug resistance. Nanomedicine has been mostly focused on solid cancers due to take advantage from the enhanced permeability and retention (EPR) effect experienced by tissues in the close vicinity of tumors, which enhance nanomedicine’s accumulation and, consequently, improve efficacy. Nanomedicines for leukemia and lymphoma, where EPR effect is not a factor, are addressed differently from solid tumors. Nevertheless, nanoparticles have provided innovative approaches to simple and non-invasive methodologies for diagnosis and treatment in liquid tumors. In this review, we consider the state of the art on different types of nanoconstructs for the management of liquid tumors, from pre-clinical studies to clinical trials. We also discuss the advantages of nanoplatforms for theranostics and the central role played by nanoparticles in this combined strategy.

Santoro, S, Vidorreta IM, Sebastian V, Moro A, Coelhoso IM, Portugal CAM, Lima JC, Desiderio G, Lombardo G, Drioli E, Mallada R, Crespo JG, Criscuoli A, Figoli A.  2017.  A non-invasive optical method for mapping temperature polarization in direct contact membrane distillation, 2017. Journal of Membrane Science. 536:156-166. AbstractWebsite
n/a
Fonseca, SM, Moreira T, Parola AJ, Pinheiro C, Laia CAT.  2017.  PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devices, 2017. Solar Energy Materials and Solar Cells. 159:94-101. AbstractWebsite
n/a
Basilio, N, Mendoza J, Gago S, Parola AJ.  2017.  pH-Driven self-sorting in a four component host-guest system, 2017. Chemical Communications. 53(48):6472-6475. AbstractWebsite
n/a
Gago, S, Pessego M, Laia CAT, Parola AJ.  2017.  pH-Tunable Fluorescence and Photochromism of a Flavylium-Based MCM-41 Pigment, 2017. Acs Omega. 2(1):122-126. AbstractWebsite
n/a
Romero, MA, Basilio N, Moro AJ, Domingues M, Gonzalez-Delgado JA, Arteaga JF, Pischel U.  2017.  Photocaged Competitor Guests: A General Approach Toward Light-Activated Cargo Release From Cucurbiturils, 2017. Chemistry-a European Journal. 23(53):13105-13111. AbstractWebsite
n/a
Mendes, R, Pedrosa P, Lima JC, Fernandes AR, Baptista PV.  2017.  Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles, 2017. Scientific Reports. 7 AbstractWebsite
n/a
Mendes, R, Pedrosa P, Lima JC, Fernandes AR, Baptista PV.  2017.  Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles, 2017. 7(1):10872. AbstractWebsite

Photothermal Therapy (PTT) impact in cancer therapy has been increasing due to the enhanced photothermal capabilities of a new generation of nanoscale photothermal agents. Among these nanoscale agents, gold nanoshells and nanorods have demonstrated optimal properties for translation of near infra-red radiation into heat at the site of interest. However, smaller spherical gold nanoparticles (AuNPs) are easier to produce, less toxic and show improved photoconversion capability that may profit from the irradiation in the visible via standard surgical green lasers. Here we show the efficient light-to-heat conversion of spherical 14 nm AuNPs irradiated in the visible region (at the surface plasmons resonance peak) and its application to selectively obliterate cancer cells. Using breast cancer as model, we show a synergistic interaction between heat (photoconversion at 530 nm) and cytotoxic action by doxorubicin with clear advantages to those of the individual therapy approaches.

Pedrosa, P, Heuer-Jungemann A, Kanaras AG, Fernandes AR, Baptista PV.  2017.  Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles, 2017. 15(1):85. AbstractWebsite

Anti-angiogenic therapy has great potential for cancer therapy with several FDA approved formulations but there are considerable side effects upon the normal blood vessels that decrease the potential application of such therapeutics. Chicken chorioallantoic membrane (CAM) has been used as a model to study angiogenesis in vivo. Using a CAM model, it had been previously shown that spherical gold nanoparticles functionalised with an anti-angiogenic peptide can humper neo-angiogenesis.

Santos, MM, Bastos P, Catela I, Zalewska K, Branco LC.  2017.  Recent Advances of Metallocenes for Medicinal Chemistry, 2017. Mini-Reviews in Medicinal Chemistry. 17(9):771-784. AbstractWebsite
n/a