Export 247 results:
Sort by: Author Title Type [ Year  (Desc)]
2021
Oliveira, {BB }, Veigas B, Baptista {PV}.  2021.  Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard”. Frontiers in Sensors. 2: Frontiers Media Abstract

Nucleic acid amplification technologies (NAATs) have become fundamental tools in molecular diagnostics, due to their ability to detect small amounts of target molecules. Since its development, Polymerase Chain Reaction (PCR) has been the most exploited method, being stablished as the “gold standard” technique for DNA amplification. However, the requirement for different working temperatures leads to the need of a thermocycler machine or complex thermal apparatus, which have been preventing its application in novel integrated devices for single workflow and high throughput analysis. Conversely, isothermal amplification methods have been gaining attention, especially for point-of-care diagnosis and applications. These non-PCR based methods have been developed by mimicking the in vivo amplification mechanisms, while performing the amplification with high sensitivity, selectivity and allowing for high-throughput analysis. These favorable capabilities have pushed forward the implementation and commercialization of several platforms that exploit isothermal amplification methods, mostly against virus, bacteria and other pathogens in water, food, environmental and clinical samples. Nevertheless, the future of isothermal amplification methods is still dependent on achieving technical maturity and broader commercialization of enzymes and reagents.

2020
Beola, L, Asín L, Roma-Rodrigues C, Fernandez-Afonso Y, Fratila {RM }, Serantes D, Ruta S, Chantrell {RW }, Fernandes {AR}, Baptista {PV}, {de la Fuente} {JM }, Grazu V, Gutierrez L.  2020.  The intracellular number of magnetic nanoparticles modulates the apoptotic death pathway after magnetic hyperthermia treatment, sep. ACS Applied Materials & Interfaces. 12:43474–43487., Number 39: ACS - American Chemical Society Abstract

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1−7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.

Branco, S, Mateus EP, Richter Gomes da Silva MD, Mendes D, Araujo Pereira MM, Schutz S, Paiva MR.  2020.  Identification of pheromone candidates for the eucalyptus weevil, Gonipterus platensis (Coleoptera, Curculionidae), FEB. JOURNAL OF APPLIED ENTOMOLOGY. 144:41-53., Number 1-2 Abstract

The eucalyptus weevil, Gonipterus platensis (Coleoptera, Curculionidae), is a major pest of eucalyptus plantations worldwide. To date, no pheromones have been identified for this species, despite their valuable potential as tools in monitoring or control strategies. Here we report the detection and identification of pheromones candidates of G. platensis. The weevil's volatile compounds were collected by solid phase micro extraction (SPME) and monolithic material sorption extraction (MMSE). Using Gas Chromatography coupled to Mass Spectrometry (GC/MS) analysis, eleven insect specific compounds were detected and identified: verbenene, cis-verbenol, trans-verbenol, verbenone, 2-oxo-1,8-cineole, 9-hydroxy-1,8-cineole, 2-alpha-hydroxy-1,8-cineole, 3-oxo-1,8-cineole, 2-beta-hydroxy-1,8-cineole, 3-alpha-hydroxy-1,8-cineole and 7-hydroxy-1,8-cineole. Three of these compounds, verbenene, cis-verbenol and trans-verbenol, were shown to be male-specific. Antennal sensitivity towards ten compounds emitted by G. platensis was detected using Gas Chromatography-Mass Spectrometry/Electroantennographic Detection (GC-MS/EAD). Extracts from virgin males proved to be attractive to virgin females in olfactometer bioassays. Further behavioural bioassays showed that both virgin females and virgin males were attracted to the male-specific compound cis-verbenol and that virgin females were attracted to trans-verbenol. Verbenone was attractive to mated females. Regarding 2-alpha-hydroxy-1.8-cineole and 2-oxo-1,8-cineole, which are produced by both sexes, the alcohol was attractive to virgin males and both the alcohol and the ketone were repellant to mated females. This is, to our knowledge, the first identification of pheromones candidates in Gonipterus spp. and also the first evidence of cineole metabolites acting as semiochemicals.

Fernandes, {AR}, c}a-Martins IM{\c, Santos {MFA }, Raposo {LR }, Mendes R, Marques J, Romão {CC }, Romão {MJ}, Santos-Silva T, Baptista {PV}.  2020.  Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, feb. ACS Biomaterials Science and Engineering. 6:1090–1101., Number 2: ACS - American Chemical Society Abstract

CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles-CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.

Maximo, P, Ferreira LM, Branco PS, Lourenco A.  2020.  Invasive Plants: Turning Enemies into Value, AUG. MOLECULES. 25, Number 15 Abstract

In this review, a brief description of the invasive phenomena associated with plants and its consequences to the ecosystem is presented. Five worldwide invasive plants that are a threat to Portugal were selected as an example, and a brief description of each is presented. A full description of their secondary metabolites and biological activity is given, and a resume of the biological activity of extracts is also included. The chemical and pharmaceutical potential of invasive species sensu lato is thus acknowledged. With this paper, we hope to demonstrate that invasive species have potential positive attributes even though at the same time they might need to be controlled or eradicated. Positive attributes include chemical and pharmaceutical properties and developing these could help mitigate the costs of management and eradication.

Fernandes, AR, Mendonça-Martins I, Santos MFA, Raposo LR, Mendes R, Marques J, Romão CC, Romão MJ, Santos-Silva T, Baptista PV.  2020.  Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, 2020. ACS Biomaterials Science & EngineeringACS Biomaterials Science & Engineering. 6(2):1090-1101.: American Chemical Society AbstractWebsite

CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles–CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles–CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.

Fernandes, AR, Mendonça-Martins I, Santos MFA, Raposo LR, Mendes R, Marques J, Romão CC, Romão MJ, Santos-Silva T, Baptista PV.  2020.  Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, 2020. ACS Biomaterials Science & Engineering. 6(2):1090-1101. AbstractWebsite
n/a
Choroba, K, Raposo LR, Palion-Gazda J, Malicka E, Erfurt K, Machura B, Fernandes AR.  2020.  In vitro antiproliferative effect of vanadium complexes bearing 8-hydroxyquinoline-based ligands - the substituent effect, 2020. Dalton Trans. 49(20):6596-6606. AbstractWebsite

This is the first comprehensive study demonstrating the antiproliferative effect of vanadium complexes bearing 8-hydroxyquinoline (quinH) ligands, including the parent and -CH3 (Me), -NO2, -Cl and -I substituted ligands, on HCT116 and A2780 cancer cell lines. To determine the structure-cytotoxicity relationships seven six-coordinate oxovanadium(v) complexes [VO(OMe)(5,7-(Me)2-quin)2] (1), [VO(OMe)(5,7-Cl2-quin)2] (2), [VO(OMe)(5,7-Cl,I-quin)2] (3), [VO(OMe)(5,7-I2-quin)2] (4), [VO(OMe)(5-NO2-quin)2] (5), [VO(OMe)(5-Cl-quin)2] (6), and [VO(OMe)(quin)2] (7) were investigated. The cytotoxicity of 8-hydroxyquinoline oxovanadium(v) complexes is higher in the A2780 cell line (lower IC50) than that observed for the widely used chemotherapeutic agent, cisplatin, while displaying low cytotoxicity for normal human primary fibroblasts. Substituents introduced into the 8-hydroxyquinoline backbone reduced the antiproliferative effect of the vanadium complexes, and the complexes with the ligand substituted only in the 5 position (5 and 6) were more cytotoxic than those with substituents in the 5,7 positions of the quin backbone (1-4). Depending on the substituent type, the cytotoxicity of 1-4 followed the trend: -Cl > -CH3 > -I. Incubation of A2780 cancer cells with IC50 concentrations of complexes 5, 6 and 7 promoted cellular detachment, possibly through membrane destabilization, and triggered apoptosis and necrosis. ROS production might be responsible for the cell death mechanism observed particularly in the A2780 cells exposed to complexes 5 and 6.

Beola, L, Asin L, Roma-Rodrigues C, Fernandez-Afonso Y, Fratila RM, Serantes D, Ruta S, Chantrell RW, Fernandes AR, Baptista PV, de la Fuente JM, Grazu V, Gutierrez L.  2020.  The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment, 2020. ACS Appl Mater Interfaces. 12(39):43474-43487. AbstractWebsite

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.

Grey, P, Fernandes SN, Gaspar D, Deuermeier J, Martins R, Fortunato E, Godinho MH, Pereira L.  2020.  Ionically Modified Cellulose Nanocrystal Self-Assembled Films with a Mesoporous Twisted Superstructure: Polarizability and Application in Ion-Gated Transistors, 2020. ACS Applied Electronic MaterialsACS Applied Electronic Materials. 2(2):426-436.: American Chemical Society AbstractWebsite
n/a
Mouquinho, A, Corvo MC, Almeida PL, Feio GM, Sotomayor J.  2020.  Influence of chain length of prepolymers in permanent memory effect of PDLC assessed by solid-state NMR. Liquid Crystals. 47:522–530., Number 4: Taylor & Francis AbstractWebsite

The relationship between linear chain (ethylene oxide units) length of polymerisable monomers with morphology, electro-optical properties and 13C nuclear magnetic resonance (NMR) spectroscopy of the corresponding polymer-dispersed liquid crystal (PDLC) films was investigated. The preferred liquid crystal molecule alignment and permanent memory effect of PDLC were greatly influenced by the length of the molecular chain of prepolymers to be incorporated as a polymer matrix. By increasing the number of ethylene oxide in prepolymer chain and maintaining the number of functionalities (polymerisable groups in each monomer molecule), the permanent memory effect of PDLC increased, as proved by solid-state 13C NMR spectroscopy.

2019
Santos, {MM }, Raposo {LR }, c}alo Carrera {G{\cVSM }, Costa A, Dionísio M, Baptista {PV}, Fernandes {AR}, Branco {LC }.  2019.  Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug, may. Chemmedchem. 14, Number 9: John Wiley & Sons, Ltd. Abstract

Herein we report the synthesis of novel ionic liquids (ILs) and organic salts by combining ibuprofen as anion with ammonium, imidazolium, or pyridinium cations. The methodology consists of an acid–base reaction of neutral ibuprofen with cation hydroxides, which were previously prepared by anion exchange from the corresponding halide salts with Amberlyst A-26(OH). In comparison with the parent drug, these organic salts display higher solubility in water and biological fluids and a smaller degree of polymorphism, which in some cases was completely eliminated. With the exception of [C 16 Pyr][Ibu] and [N 1,1,2,2OH1 ][Ibu], the prepared salts did not affect the viability of normal human dermal fibroblasts or ovarian carcinoma (A2780) cells. Therefore, these ibuprofen-based ionic liquids may be very promising lead candidates for the development of effective formulations of this drug.

Braz Fernandes, FM, Camacho E, Rodrigues PF, Inácio P, Santos TG, Schell N.  2019.  In Situ Structural Characterization of Functionally Graded Ni–Ti Shape Memory Alloy During Tensile Loading, dec. Shape Memory and Superelasticity. 5:457–467., Number 4 AbstractWebsite

n/a

Santos, MM, Raposo LR, Carrera GVSM, Costa A, Dionisio M, Baptista PV, Fernandes AR, Branco LC.  2019.  Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug, 2019. ChemMedChem. 14(9):907-911. AbstractWebsite

Herein we report the synthesis of novel ionic liquids (ILs) and organic salts by combining ibuprofen as anion with ammonium, imidazolium, or pyridinium cations. The methodology consists of an acid-base reaction of neutral ibuprofen with cation hydroxides, which were previously prepared by anion exchange from the corresponding halide salts with Amberlyst A-26(OH). In comparison with the parent drug, these organic salts display higher solubility in water and biological fluids and a smaller degree of polymorphism, which in some cases was completely eliminated. With the exception of [C16 Pyr][Ibu] and [N1,1,2,2OH1 ][Ibu], the prepared salts did not affect the viability of normal human dermal fibroblasts or ovarian carcinoma (A2780) cells. Therefore, these ibuprofen-based ionic liquids may be very promising lead candidates for the development of effective formulations of this drug.

Maugeri, G, Lychko I, Sobral R, Roque ACA.  2019.  Identification and Antibiotic-Susceptibility Profiling of Infectious Bacterial Agents: A Review of Current and FutureTrends. Biotechnology Journal. 14(1700750) AbstractPDFWebsite

Antimicrobial resistance is one of the most worrying threats to humankind with extremely high healthcare costs associated. The current technologies used in clinical microbiology to identify the bacterial agent and profile antimicrobial susceptibility are time‐consuming and frequently expensive. As a result, physicians prescribe empirical antimicrobial therapies. This scenario is often the cause of therapeutic failures, causing higher mortality rates and healthcare costs, as well as the emergence and spread of antibiotic resistant bacteria. As such, new technologies for rapid identification of the pathogen and antimicrobial susceptibility testing are needed. This review summarizes the current technologies, and the promising emerging and future alternatives for the identification and profiling of antimicrobial resistance bacterial agents, which are expected to revolutionize the field of clinical diagnostics.

Padua, A, Gruber J, Gamboa H, Roque ACA.  2019.  Impact of Sensing Film’s Production Method on Classification Accuracy by Electronic Nose. Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES. , Prague, Czech Republic AbstractPDF

The development of gas sensing materials is relevant in the field of non-invasive biodevices. In this work, we used an electronic nose (E-nose) developed by our research group, which possess versatile and unique sensing materials. These are gels that can be spread over the substrate by Film Coating or Spin Coating. This study aims to evaluate the influence of the sensing film spreading method selected on the classification capabilities of the E-nose. The methodology followed consisted of performing an experiment where the E-nose was exposed to 13 different pure volatile organic compounds. The sensor array had two sensing films produced by Film Coating, and other two produced by Spin Coating. After data collection, a set of features was extracted from the original signal curves, and the best were selected by Recursive Feature Elimination. Then, the classification performance of Multinomial Logistic regression, Decision Tree, and Naíve Bayes was evaluated. The results showed that both s preading methods for sensing film’s production are adequate since the estimated error of classification was inferior to 4 % for all the classification tools applied.

Ramos, DJ, Carrêlo H, Borges JP, Romero NC, Garcia JS, Cidade MT.  2019.  Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications. Materials. 12(7):1-13. AbstractWebsite

A (model) composite system for drug delivery was developed based on a thermoresponsive hydrogel loaded with microparticles. We used Pluronic F127 hydrogel as the continuous phase and alginate microparticles as the dispersed phase of this composite system. It is well known that Pluronic F127 forms a gel when added to water in an appropriate concentration and in a certain temperature range. Pluronic F127 hydrogel may be loaded with drug and injected, in its sol state, to act as a drug delivery system in physiological environment. A rheological characterization allowed the most appropriate concentration of Pluronic F127 (15.5 wt%) and appropriate alginate microparticles contents (5 and 10 wt%) to be determined. Methylene blue (MB) was used as model drug to perform drug release studies in MB loaded Pluronic hydrogel and in MB loaded alginate microparticles/Pluronic hydrogel composite system. The latter showed a significantly slower MB release than the former (10 times), suggesting its potential in the development of dual cargo release systems either for drug delivery or tissue engineering.

Machado, MA, Inácio PL, Santos RA, Gomes AF, Martins AP, Carvalho MS, Santos TG.  2019.  Inspection of composite parts produced by additive manufacturing: Air-coupled ultrasound and thermography. 58th Annual Conference of the British Institute of Non-Destructive Testing, NDT 2019. , Telford, UK Abstract

Polymeric parts produced by Fused Deposition Modelling (FDM) Additive Manufacturing (AM) has no special safety requirements, and therefore, NDT is not required. However, the use of AM to produce Fibre Reinforcement Thermoplastics (FRTP) parts means that structural applications with safety requirements are envisaged, demanding reliable NDT methods. This paper presents experimental results and numerical simulation by Finite Element Method (FEM) of the NDT inspection of different parts of polymeric and RFTP composite materials. The parts were produced by FDM Additive Manufacturing and different delamination defects were introduced at different positions and with different dimensions and morphologies. Two different NDT techniques were used, exploiting different inspection parameters: air-coupled ultrasound, using frequencies between 50 and 400 kHz and active transient thermography, in both reflection and transition modes. The influence of the curvature of the parts was analysed, from the experimental point of view, and the results were compared with different numerical simulation strategies. It was shown that, both NDT techniques can detect the defects, with good spatial resolution, being the thermography reflection mode the fastest and expedite for curvature parts. The numerical simulation corroborates the experimental results allowing a deeper insight on the physical phenomena involved.

Dias, L, Gouveia JP, Lourenço P, Seixas J.  2019.  Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy . 81:725-735,doi:https://doi.org/10.1016/j.landusepol.2018.11.036.
Cruz, H, Jordão N, Dionísio M, Pina F, Branco LC.  2019.  Intrinsically Electrochromic Deep Eutectic Solvents. Chemistry Select. 4:1-6.Website
Santos, MM, Raposo LR, Carrera GVSM, Costa A, Dionisio M, Baptista PV, Fernandes AR, Branco LC.  2019.  Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug. ChemMedChem . 14:907–911.Website
2018
Svahn, N, Moro {AJ }, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista {PV}, Fernandes {AR}, Lima {JC}, Rodríguez L.  2018.  The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, oct. Chemistry - A European Journal. 24:14654–14667., Number 55: Wiley Abstract

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 μm) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 μm), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-H⋅⋅⋅π contacts as the main driving forces for the three-dimensional packing in these molecules.

Neves, F, Stark A, Schell N, Mendes MJ, Aguas H, Fortunato E, Martins R, Correia JB, Joyce A.  2018.  Investigation of single phase Cu2ZnSn(x)Sb(1−x)S4 compounds processed by mechanochemical synthesis, Jul. Phys. Rev. Materials. 2:075404.: American Physical Society AbstractWebsite

n/a

Teixeira, E, Lima JC, Jorge Parola A, Branco PS.  2018.  Incorporation of Coumarin-Based Fluorescent Monomers into Co-Oligomeric Molecules, APR. POLYMERS. 10, Number 4 Abstract
n/a
Morais, TS, Jousseaume Y, MF PM, Roma-Rodrigues C, Fernandes AR, Marques F, Villa de Brito MJ, Garcia MH.  2018.  Important cytotoxic and cytostatic effects of new copper(i)-phosphane compounds with N,N, N,O and N,S bidentate ligands, 2018. Dalton Trans. 47(23):7819-7829. AbstractWebsite

A family of six phosphane Cu(i) complexes bearing N,N, N,O and N,S bidentate ligands was synthesized. All the compounds were fully characterized by classical analytical and spectroscopic methods, and five of them were also characterized by X-ray diffraction studies. All the compounds exhibit high cytotoxicity against the human breast cancer cell line MCF7 with IC50 values far lower than those found for cisplatin, a current chemotherapeutic in clinical use. Compounds 1[combining low line] and 3[combining low line] induce cell cycle arrest in the G2/M phase and cell death by apoptosis. The cytotoxic and cytostatic effects of these compounds on MCF7 cells suggest that they are suitable for further in vivo studies with breast cancer models.