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Abstract: The development of gas sensing materials is relevant in the field of non-invasive biodevices. In this work, we
used an electronic nose (E-nose) developed by our research group, which possess versatile and unique sensing
materials. These are gels that can be spread over the substrate by Film Coating or Spin Coating. This study
aims to evaluate the influence of the sensing film spreading method selected on the classification capabilities of
the E-nose. The methodology followed consisted of performing an experiment where the E-nose was exposed
to 13 different pure volatile organic compounds. The sensor array had two sensing films produced by Film
Coating, and other two produced by Spin Coating. After data collection, a set of features was extracted from
the original signal curves, and the best were selected by Recursive Feature Elimination. Then, the classification
performance of Multinomial Logistic regression, Decision Tree, and Naı̈ve Bayes was evaluated. The results
showed that both spreading methods for sensing films production are adequate since the estimated error of
classification was inferior to 4 % for all the classification tools applied.

1 INTRODUCTION

An electronic nose is a device able to detect and iden-
tify odours. The way it works is inspired in the mam-
malian’s olfactory system (Sankaran et al., 2012), ha-
ving two main parts: the perception and the recogni-
tion. The perception instrument has a delivery system
(to carry the gas sample from the sample to the detec-
tor), a detection system with a sensor array (where the
interaction with the gas sample occurs), and a trans-
duction and data collection system (that converts the
properties changing in the sensors into electrical sig-
nals) (Peris and Escuder-Gilabert, 2009). And the re-
cognition part includes mathematical methods for fe-
atures extraction and selection, as well as algorithms
for pattern recognition (Yan et al., 2015).

The sensors might be based on Surface Acou-
stic Wave (SAW), Quartz Crystal Microbalance
(QCM), Conducting Polymers (CP), Metal Oxide Se-
miconductors (MOS), optical sensors, among others
(Gutiérrez and Horrillo, 2014). Each sensor reacts to
the presence of the odour in a different way, depen-

ding on its own sensibility and specificity. The pat-
terns of odours generated, also called ”fingerprint”,
are electrical signals that result from the variance of
the sensor properties, such as conductance, voltage
and capacity. Furthermore, the signals acquired are
analysed, the best features are scored, and a pattern
recognition method is applied. For instance, Princi-
pal Component Analysis (PCA) has been employed to
reduce the number of features extracted from the sig-
nals (Ghasemi-Varnamkhasti et al., 2015), (Ordukaya
and Karlik, 2017). Additionally, machine learning al-
gorithms are commonly used for odours recognition
(Phaisangittisagul et al., 2010), (Zhang et al., 2008),
and (Barbri et al., 2009) , and are also employed for
concentration prediction (Xu et al., 2016).

Machine learning algorithms are becoming very
important for medical data analysis. For instance,
Decision Tree is a transparent and easily interpreta-
ble method, presenting a high potential for diagnostic
model building. (Polaka et al., 2017).

We created a home-made E-nose based on optical
sensors, which possess a new class of sensing ma-
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terials invented by our research group. These gels
are very versatile and have unique stimuli-responsive
properties, altering their optical configuration while
interacting with volatile organic compounds (VOCs)
(Hussain et al., 2017). This paper uses the E-nose
system we developed, which was previously descri-
bed in (Padua et al., 2018), for identification of 13
different pure VOCs. Two different spreading met-
hod techniques have been used to produce our sensing
films: Film Coating and Spin Coating. In this study,
we aim to test if sensing films produced by different
spreading techniques have distinct VOCs discrimina-
tion capabilities.

Moreover, we were also interested in applying dif-
ferent machine learning algorithms for VOCs classi-
fication.

Support Vector Machine (SVM) for E-noses with
MOS sensors array (Ghasemi-Varnamkhasti et al.,
2015); and Neural network and the Large Margin Ne-
arest Neighbours (LMNN) for E-noses using SAW
sensors array (Hotel et al., 2018) produced the best
classification results. However, when discrimination
can be done with a simple method, the usage of
more complex approaches is not needed (Ghasemi-
Varnamkhasti et al., 2015).

(Ordukaya and Karlik, 2017) compared the per-
formances of different machine learning algorithms
for olive oil classification by an E-nose (Cyranose
320®): Naı̈ve Bayes, k-Nearest Neighbours (k-NN),
Linear Discriminant Analysis (LDA), Decision Tree,
Artificial Neural Network (ANN), and SVM using
two different approaches: using dimensional re-
duction and without data reduction. The best success
rate was found with Naı̈ve Bayes classifier after data
reduction from 32 inputs to 8 inputs based on PCA.

The work of (Cho and Kurup, 2011) showed that
decision tree models have excellent results for classi-
fication and provide easily interpretable tree structure
for E-nose data. The decision tree approach was re-
ported as a promising pattern recognition method with
accuracy rates above 97 % using several features ex-
tracted from signals acquired by an E-nose based on
MOS sensors. The training of the decision tree was
also faster compared to Multilayer Perceptron (MLP)
and fuzzy ARTMAP classifiers.

(Siavash et al., 2018) developed a research where
used E-noses based on MOS sensors (FOX 400, Al-
pha M.O.S, France) and Field-Asymmetric Ion Mo-
bility Spectrometry (FAIMS, Owlstone Lonestar) to
distinguish healthy from diabetic patients. High pre-
diction accuracy was achieved by combining PCA
with a sparse logistic regression and a Gaussian pro-
cess classifier. Another study used Logistic regres-
sion to classify data collected by an E-nose to iden-

tify correctly biofilm-producing versus non biofilm-
producing bacteria species with accuracy ranging
from 72.2 % to 100 %, depending on the organism
and methodology. When the dataset is not com-
plex, simple methods might be better than complica-
ted techniques to discriminate between different clas-
ses (Ghasemi-Varnamkhasti et al., 2015).

We decided to test three simple machine lear-
ning algorithms, since other authors have reported
the capability of other E-noses to perform classifica-
tion of samples in a fast and reliable way using those
methods (Ordukaya and Karlik, 2017) (Ghasemi-
Varnamkhasti et al., 2015). In case we were not able
to achieve good performance, we intended to apply
more advanced computational techniques to enhance
classification accuracy.

Taking into account the results obtained in the
previous studies, our study was focused on the per-
formance of Logistic Regression, Decision Tree and
Naı̈ve Bayes as data classifier methods. Finally, the
class discrimination capabilities of these classifiers
were compared.

2 MATERIALS AND METHODS

2.1 Data Collection

A schematic of the E-nose system used is represented
in Figure 1. The device is composed of three main
parts: the delivery system, the detection chamber and
the transduction system.

The delivery system has two pumps working al-
ternately: the exposure pump, which creates a gra-
dient of pressure that transfers the headspace from the
sample chamber to the detection chamber; and the re-
covery pump, that is responsible for purging the de-
tection chamber (in the recovery periods).

The detection chamber is where the interaction of
the VOCs with the array of sensors takes place. Here,
the optical sensors that compose the array change
their optical properties while interacting with VOCs,
and these changes are detected by Light Dependent
Resistors (LDRs) and converted into electrical sig-
nals.

Signals’ collection is ensured by the transduction
system. It is composed of a microcontroller (Arduino
Due), that converts the analogue signals into digital
signals, and an embedded system (Raspberry Pi 2 Mo-
del B), for signals collection. More details about the
device have been earlier reported (Padua et al., 2018).

Inside the detection chamber, six optical sensors
based on tunable sensing films were used in the sensor
array - see Figure 2 a).
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Figure 1: Schematic representation of E-nose V2.

Each sensor is composed of:

• a source of unpolarised light - a Light Emitting
Diode (LED);

• a sensing film - based on tunable sensing gels des-
cribed in (Hussain et al., 2017) - sandwished bet-
ween two crossed polarising filters;

• a Light Dependent Resistor (LDR).

As shown in Figure 2 b), a sensing film consists
of a thin layer of sensing gel spread on a glass slide
with a black mask on the back (that has a 5 mm di-
ameter hole, which delimiters the area of detection).
The sensing gels’ composition is based on a biopoly-
mer matrix with droplets of liquid crystal (LC), self-
assembled in the presence of ionic liquid (IL) (Hus-
sain et al., 2017).

Figure 2: a) Schematic of sensor array. ; b) Sensing film.

In the present study, sensors nr 4 and 5 have sen-
sing films produced by a standard (STD) recipe des-
cribed in Table 1, and sensors 1 and 3 are also pro-
duced by the standard recipe, plus adding 1.5 µL of
a cross-linking agent to the standard recipe, named
glutaraldehyde (GA), for 5 min at 500 RPM magnetic
stirring. Sensors 2 and 6 are controls: sensing film 2
does not have IL and sensing film 6 does not contain
LC.

After the gel’s production, the sensing films might
be spread on the glass slides by two different film
applicator equipment: Film Coater or Spin Coater.
The Film Coater used was the automatic film appli-
cator with perforated heated vacuum bed from TQC

Table 1: Standard recipe for sensing films production.

Component Time Magnetic Stirring
(min) (RPM)

BMIM DCA (IL) 10 300
5 CB (LC) 10 300

BSG 10-15 500
MilliQ water 5 500

IL = Ionic Liquid; LC = Liquid Crystal ; BSG = Bovine Skin Gelatin.

Sheen) - Figure 3 a), and the Spin Coater used was
the SPIN150i Tabletop from POLOS - Figure 3 b).

Figure 3: a) Film Coater ; b) Spin Coater.

The thickness of the sensing films produced by
Film Coating is 30 µm, and the drop quantity of gel
used was 15 µL. Finally, the optical sensing films with
light polarisation properties were obtained.

For this experiment, in the sensor array, sensing
films 1 and 4 were spread by Film Coating (FC), whe-
reas sensing films 3 and 5 were spread by Spin Coa-
ting (SC). A brief description of each sensor is provi-
ded in Table 2.

The experiment performed consisted in exposing
the same array of sensors (Table 2), placed inside the
detection chamber, to a set of 13 VOCs, sequentially,
in the following order: acetone, isopropanol, ethanol,
methanol, hexane, heptane, toluene, xylene, benzene,
chloroform, dichloromethane, diethyl ether, and ethyl
acetate. The experiment conditions are described in
the list below:

• VOC quantity: 20 mL

• Sample temperature: 37 °C

• Time exposure: 5 s

• Time recovery: 15 s

• Duration: 20 min

• Sampling rate: 5 Hz

The data was collected by the E-nose data trans-
duction and acquisition system. An example of a set
of 6 signals (one per sensor) acquired for exposure to
acetone is shown in Figure 4.
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Table 2: Sensor array of the E-nose.

Sensor Sensing film description Spreading technique
1 STD gel + GA FC
2 Control (without IL) FC
3 STD gel + GA SC
4 STD gel FC
5 STD gel SC
6 Control (without LC) SC

STD = Standard ; GA = Glutaraldehyde ; FC = Film Coating ; SC = Spin Coating ; LC = Liquid Crystal ; IL = Ionic Liquid.

2.2 Data Analysis

After data collection, the features related to each in-
dividual sensor were extracted. Table 3 describes the
8 features extracted per sensor, and Table 4 explains
the physicochemical meaning of each feature. Since
the sensor array is composed of 6 sensors, the num-
ber of original features that can be used is given by
6x8 = 48.

Then, auto-scaling was exploited for data pre-
processing, using a standardisation technique, accor-
ding to Eq. 1:

Z j =
(x j− x̄l)

s̄l
(1)

where Z j is the value of x j after auto-scaling. x j is
defined as the variable before scaling. x̄l is the varia-
ble mean and s̄l is the standard deviation of the vari-
able. The final value Z j varies around the mean zero
with standard deviation one.

2.2.1 Features Selection

We were interested in comparing the optical respon-
ses given by sensors where sensing films that were
spread by Film Coating were applied, versus from
sensors with sensing films that were spread by Spin
Coating.

Therefore, the original set of 48 features was di-
vided into two sub-groups (see Figure 5). One group
is composed by 16 features of sensing films produ-
ced by Film Coating (sensors 1 and 4 - red signals in
Figure 4), and the other is composed by 16 features
of sensing films produced by Spin Coating (sensors 3
and 5 - blue signals in Figure 4).

For each group of features, we were interested in
knowing the best number of features to select, and
what features were more interesting for VOCs classi-
fication.

Initially, each sub-group has 16 features. To
know the more relevant features for differentiating the
VOCs, Recursive Feature Elimination (RFE) was per-
formed. The estimator ’svc’ was used to assign weig-

hts to features. This estimator was trained on the ini-
tial set of features and the importance of each feature
was obtained. Then, the RFE method removes the
weakest features and selects them by recursively con-
sidering smaller and smaller sets of features. The pro-
cedure is recursively repeated on the pruned set until
a specific number of features to select is reached. For
each sub-group of features, RFE was used to select
the best number of features, and the top best were se-
lected by cross-validation (2 folds).

2.2.2 Classification Models

We studied which classification model works best for
sensors with sensing films produced by Spin Coating
and Film Coating. To asses the quality of various pre-
diction methods, we trained models with three diffe-
rent classification techniques: Multinominal Logistic
regression, Decision Tree, and Naı̈ve Bayes.

Figure 6 shows the procedure used for each clas-
sifier. Each group of best features related to Film Co-
ating or Spin Coating was randomly divided in train
data (70 %) and test data (30 %).

Cross-validation (10 folds) was applied on the
train data. This means that the train set was rand-
omly divided in 10 subsets, using 9 for training the
model and the remaining to validate it. Firstly, the
model was built on the train set, then the training er-
ror was calculated; the validation set was tested se-
parately and the validation error was also obtained.
This procedure was repeated 9 more times, each time
using a different subset for validation. The average
over classes of cross-validation for the different clas-
sification techniques was reported. The parameters of
the models associated to a lower validation error were
selected for classifiers optimisation.

The parameters of optimisation were then applied
on the classifier for prediction on the Test data. Fi-
nally, for each classifier, the estimated error was cal-
culated, and the McNemar’s test was used to compare
the classifiers.
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FC: sensor with sensing film spread by Film Coating; SC: sensor with sensing film spread by Spin Coating; IL: Ionic Liquid; LC: Liquid Crystal.

Figure 4: Examples of cycles from signals collected when the sensor array is cyclically exposed to acetone for 5 min, during
the 20 min experiment.

Figure 5: Schematic of features selection algorithm.

2.2.3 Naı̈ve Bayes

Naı̈ve Bayes methods are a set of probabilistic algo-
rithms based on applying Bayes theorem with strong

independence assumption between every pair of fea-
tures.

For this work, we assumed the likelihood of the
features to be Gaussian. We applied the GaussianNB
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Table 3: Features extracted from the signals.

Feature name Description
arelv (+ nr sensor) signal’s relative amplitude
amax (+ nr sensor) x coordinate of signal’s maximum
max (+ nr sensor) y coordinate of signal’s maximum

amaxdv (+ nr sensor) x coordinate of maximum of signal’s first derivative
maxdv (+ nr sensor) y coordinate of maximum of signal’s first derivative
amindv (+ nr sensor) x coordinate of minimum of signal’s first derivative
mindv (+ nr sensor) y coordinate of minimum of signal’s first derivative
onset (+ nr sensor) time at which the signal raises above the noise after the recovery time have started

Table 4: Features meaning.

Feature name Meaning
arelv (+ nr sensor) Value influenced by concentration of VOC and affinity towards sensing gel
amax (+ nr sensor) Time needed for maximum detection of VOC
max (+ nr sensor) Level of maximum VOC detection

amaxdv (+ nr sensor) Time when the rate of interaction VOC-sensing film is higher
maxdv (+ nr sensor) Maximum rate of interaction VOC-sensing film
amindv (+ nr sensor) Time when the rate of unlink VOC-sensing film is higher
mindv (+ nr sensor) Maximum rate of unlink VOC-sensing film
onset (+ nr sensor) Time needed for the sensor to start the response

Figure 6: Schematic of classifiers’ algorithm.

function from the scikit-learn library to implement the
Gaussian Naı̈ve Bayes algorithm for classification.

2.2.4 Decision Tree

A Decision Tree is a flowchart, where each branch re-
presents the outcome of a decision, and each terminal
node holds a class label. It is a method simple to un-
derstand, interpret and visualise data.

The Decision Tree applied was the DecisionTree-
Classifier from scikit-learn library, and its best maxi-
mum depth was studied.

2.2.5 Multinomial Logistic Regression

Multinomial logistic regression generalises logistic
regression to multiclass problems, i.e. with more than
two possible discrete outcomes.

We used the Logistic regression classifier from the
scikit-learn library. The one-vs-all methodology was
applied. Our dataset is composed by several classes,
therefore we need to decompose our training set into
13 different binary classification problems, where one
of the classes/labels corresponds to 1, and the remai-
ning labels correspond to 0. Each logistic regression
classifier is defined by:

h(i)
Θ
(x) = P(y = i | x;Θ) , i = (1,2, ...13) (2)

We train the logistic classifier for each class i to
predict the probability of an input y that y = i. When
we want to predict a new input x, we pick the class that
maximises the probability of x belonging to a certain
class:

maxi h(i)
Θ
(x) (3)

3 RESULTS

3.1 Features Selection

According to RFE - see Figure 7a - the lower error rate
of the classifier with 2-fold cross-validation occurs for
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6 features. Consequently, the best number of featu-
res for VOCs classification using sensors with sensing
films produced by Film Coating is 6.

Figure 7b shows that the best number of features
for VOCs classification using sensors with sensing
films produced by Spin Coating is also 6. A higher
number of features decreases the error rate. Howe-
ver, the error decreases less than 5 % using 13 featu-
res. Since a lower number of features improves the
computation performance, we decided to use also 6
features for this group of sensors.

Therefore, in the next steps, only the best 6 featu-
res per group were selected.

(a) Features extracted from signals obtained from sen-
sors with sensing films produced by Film Coating.

(b) Features extracted from signals obtained from sen-
sors with sensing films produced by Spin Coating.

Figure 7: Correlation between cross-validation scores of
RFE vs number of features extracted from signals.

The ranking obtained by RFE indicated that the
6 features with a higher score were: arelv1, mv1,
maxdv1, arelv4, mv4 and maxdv4 for Film Coating;
and arelv3, mv3, maxdv3, mindv3, arelv5, and mv5
for Spin Coating. Therefore, these features were the
only used for training and testing in the classification
models performed.

3.2 Classification

We studied the best parameter C for Logistic regres-
sion, and the best maximum depth of Decision Tree,
using features extracted from the signals given by sen-
sors where sensing films produced by Film Coating
were used, and by sensors where sensing films produ-
ced by Spin Coating were used. Then, we assessed the
accuracy of the three classification models: Logistic
regression, Decision Tree and Naı̈ve Bayes.

3.2.1 Classification using Sensors with Sensing
Films Produced by Film Coating

The value of parameter C for Logistic Regression was
optimised - Figure 8a , as well as the best value for
depth in Decision Tree - Figure 8b.

Using sensing films produced by Film Coating in
the sensors, the best value of parameter C for Logistic
Regression is 65536 - Figure 8a. And the best depth
for Decision Tree is 15 - Figure 8b. Hence, these va-
lues were selected to be used in the classifiers’ mo-
dels.

The estimated errors calculated on the Test set
were 2.75 % for Multinominal Logistic Regression,
3.15 % for Decision Tree, and 3.15 % for Naïve
Bayes.

We also compared the difference in accuracy bet-
ween the classifiers using the McNemar’s test, which
indicates a significant difference between two classi-
fiers (with 95 % confidence) if the value of the test is
≥ 3.84. The results for Film Coating were the follo-
wing:

• Multinominal Logistic Regression vs Decision
Tree: 0.0

• Multinominal Logistic Regression vs Naı̈ve
Bayes: 0.0

• Decision Tree vs Naı̈ve Bayes: 0.1

The results above indicate that there is no signifi-
cant difference between the accuracy of the three clas-
sifiers used.

3.2.2 Classification using Sensors with Sensing
Films Produced by Spin Coating

Using sensing films produced by Spin Coating in the
sensors, the best value of parameter C for Logistic
Regression is 32768 - Figure 9a. And the best depth
for Decision Tree is 8 - Figure 9b. Hence, these values
were selected to be used in the classifiers’ models.

The estimated errors calculated on the Test set
were 2.76 % for Multinominal Logistic Regression,
3.15 % for Decision Tree, and 3.94 % for Naïve
Bayes.
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(a) Optimisation of C parameter for Logistic Regression.

(b) Optimisation of depth parameter for Decision Tree.

Figure 8: Optimisation of algorithms’ parameters using sen-
sing films produced by Film Coating.

The McNemar’s test was also performed. The re-
sults for Spin Coating were the following:

• Multinominal Logistic Regression vs Decision
Tree: 0.00

• Multinominal Logistic Regression vs Naı̈ve
Bayes: 0.36

• Decision Tree vs Naı̈ve Bayes: 0.08
The results above indicate that there is no signifi-

cant difference among the accuracy results of Mul-
tinominal Logistic Regression, Decision Tree and
Naı̈ve Bayes.

(a) Optimisation of C parameter for Logistic Regression.

(b) Optimisation of depth parameter for Decision Tree.

Figure 9: Optimisation of algorithms’ parameters using sen-
sing films produced by Spin Coating.

4 CONCLUSIONS

In this study, the RFE results indicate that the most
effective features for classifications are: relative am-
plitude, maximum of the signal, and maximum and
minimum of signal’s first derivative.

For distinction of 13 different VOCs, the three
simple classification methods studied were effective,
with estimated error inferior to 4 % for all of them.

Comparing the results obtained for sensors with
sensing films produced by Film Coating vs sensing
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films produced by Spin Coating, the values did not
vary significantly for any of the classifiers. Therefore,
we conclude that both spreading method techniques
are very good for sensing films production, and none
of them revealed to be better than the others for VOCs
classification.

The E-nose system and the machine learning algo-
rithms applied in the present study demonstrated ca-
pability to distinguish the different VOCs in a quick,
simple and accurate way, using both sensing film pro-
duction types.

Future studies can be performed in order to ex-
plore the application of the E-nose in many different
sectors, such as food and beverage evaluation, envi-
ronmental safety or medical research. Moreover, ot-
her Machine Learning algorithms can be explored and
optimised.
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