Export 429 results:
Sort by: Author Title Type [ Year  (Desc)]
1999
Teixeira, S, Dias JM, Carvalho AL, Bourenkov G, Bartunik H, Almendra MJ, Moura I, Moura JJG, Romao MJ.  1999.  Crystallographic studies on a tungsten-containning formate dehydrogenase from Desulfovibrio gigas. Journal of Inorganic Biochemistry. 74:89-89., Number 1-4 AbstractWebsite
n/a
1998
Baptista, {PMRV}.  1998.  Construction of a YAC/PAC physical map of a gene rich region in 1p13.3., jan. European Journal of Human Genetics. 6:168., Number NA: Springer Nature Abstract
n/a
Flomen, {RH }, Vatcheva R, Gorman {PA }, Baptista {PMRV}, Groet J.  1998.  Construction and analysis of a sequence-ready map in 4q25: Rieger syndrome can be caused by haploinsufficiency of RIEG, but also by chromosome breaks approximate to 90 kb upstream of this gene, feb. Genomics. 47:409–413., Number 3: Elsevier Abstract

The autosomal dominant disorder Rieger syndrome (RIEG) shows genetic heterogeneity and has a phenotype characterized by malformations of the anterior segment of the eye, failure of the periumbilical skin to involute, and dental hypoplasia. The main locus for RIEG was mapped to the 4q25-q27 chromosomal segment using a series of cytogenetic abnormalities as well as by genetic linkage to DNA markers. Recently, a bicoid-related homeobox transcription factor gene called RIEG has been cloned, characterized, and proven to cause the 4q25 linked RIEG. Its mode of action in the pathogenesis of RIEG was not conclusively proven, since most etiological mutations detected. In the RIEG sequence caused amino acid substitutions or splice changes in the homeodomain. Through FISH analysis of a 460-kb sequence-ready map (PAC contig) around RIEG that we report in this paper, we demonstrate that the 4q25 linked RIEG disorder can arise from the haploid, whole-gene deletion of RIEG, but also from a translocation break 90 kb upstream from the gene. The data provide conclusive evidence that physical or functional haploinsufficiency of RIEG is the pathogenic mechanism for Rieger syndrome. The map also defines restriction fragments bearing sequences with a potential key regulatory role in the control of homeobox gene expression.

Pina, F.  1998.  Caffeine interaction with synthetic flavylium salts. A flash photolysis study for the adduct involving 4 ',7-dihydroxyflavylium. Journal of Photochemistry and Photobiology a-Chemistry. 117:51-59., Number 1 AbstractWebsite
n/a
Houbiers, C, Lima JC, Macanita AL, Santos H.  1998.  Color stabilization of malvidin 3-glucoside: Self-aggregation of the flavylium cation and copigmentation with the Z-chalcone form. Journal of Physical Chemistry B. 102:3578-3585., Number 18 Abstract
n/a
1997
Yu, L, Kennedy M, Czaja C, Tavares P, Moura JJ, Moura I, Rusnak F.  1997.  Conversion of desulforedoxin into a rubredoxin center, Feb 24. Biochem Biophys Res Commun. 231:679-82., Number 3 AbstractWebsite

Rubredoxin and desulforedoxin both contain an Fe(S-Cys)4 center. However, the spectroscopic properties of the center in desulforedoxin differ from rubredoxin. These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated highspin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin.

Silva, RN, Rato LM, Lemos JM, Coito F.  1997.  Cascade control of a distributed collector solar field. Journal of Process Control. 7:111–117(Number 2):Elsevier. Abstract

n/a

Silva, RN, Rato LM, Lemos JM, Coito F.  1997.  Cascade control of a distributed collector solar field. Journal of Process Control. 7:111–117., Number 2: Elsevier Abstract

n/a

Yu, L, Kennedy M, Czaja C, Tavares P, Moura JJG, Moura I, Rusnak F.  1997.  Conversion of desulforedoxin into a rubredoxin center. Biochemical And Biophysical Research Communications. {231}:{679-682}., Number {3} Abstract

Rubredoxin and desulforedoxin both contain an Fe(S-Cys)(4) center, However the spectroscopic properties of the center in desulforedoxin differ from rubredoxin, These differences arise from a distortion of the metal site hypothesized to result from adjacent cysteine residues in the primary sequence of desulforedoxin. Two desulforedoxin mutants were generated in which either a G or P-V were inserted between adjacent cysteines. Both mutants exhibited optical spectra with maxima at 278, 345, 380, 480, and 560 nm while the low temperature X-band EPR spectra indicated high-spin Fe3+ ions with large rhombic distortions (E/D = 0.21-0.23). These spectroscopic properties are distinct from wild type desulforedoxin and virtually identical to rubredoxin. (C) 1997 Academic Press.

Romao, MJ, Hubert R.  1997.  Crystal structure and mechanism of action of the xanthine oxidase-related aldehyde oxidoreductase from Desulfovibrio gigas. Biochemical Society Transactions. 25:755-757., Number 3 AbstractWebsite
n/a
Romao, MJ, Kolln I, Dias JM, Carvalho AL, Romero A, Varela PF, Sanz L, Topfer-Petersen E, Calvete JJ.  1997.  Crystal structure of acidic seminal fluid protein (aSFP) at 1.9 angstrom resolution: a bovine polypeptide of the spermadhesin family. Journal of Molecular Biology. 274:650-660., Number 4 AbstractWebsite
n/a
Archer, M, Banci L, Dikaya E, Romao MJ.  1997.  Crystal structure of cytochrome c' from Rhodocyclus gelatinosus and comparison with other cytochromes c'. Journal of Biological Inorganic Chemistry. 2:611-622., Number 5 AbstractWebsite
n/a
Romero, A, Romao MJ, Varela PF, Kolln I, Dias JM, Carvalho AL, Sanz L, TopferPetersen E, Calvete JJ.  1997.  The crystal structures of two spermadhesins reveal the CUB domain fold. Nature Structural Biology. 4:783-788., Number 10 AbstractWebsite
n/a
Dias, JM, Carvalho AL, Kolln I, Calvete JJ, TopferPetersen E, Varela PF, Romero A, Urbanke C, Romao MJ.  1997.  Crystallization and preliminary x-ray diffraction studies of aSFP, a bovine seminal plasma protein with a single CUB domain architecture. Protein Science. 6:725-727., Number 3 AbstractWebsite
n/a
1996
Marques, F, Duarte RO, Moura JJ, Bicho MP.  1996.  Conversion of adrenaline to indolic derivatives by the human erythrocyte plasma membrane, Sep-Oct. Biol Signals. 5:275-82., Number 5 AbstractWebsite

The conversion of adrenaline to aminochromes by the human erythrocyte plasma membranes at pH 9.5 was shown to be a complex reaction that proceeded at least by two distinct phases. The first one, corresponding to the formation of adrenochrome, is catalyzed in the presence of the membranes, suggesting the involvement of an enzyme-mediated process. Active oxygen species were identified as intermediates during this phase. Oxygen radical scavengers (catalase and superoxide dismutase) suggested H2O2 and O2- involvement. Adrenochrome formation was stimulated by NADH indicating the participation of another enzyme (NADH dehydrogenase) which is known to be present in the human erythrocyte plasma membrane. The second phase, corresponding to the disappearance of adrenochrome, is also stimulated by NADH and inhibited in the presence of the membranes. In this reaction, adrenochrome is converted to aminochromes via adrenochrome semiquinone. The formation of radical species is demonstrated by EPR spectroscopy. The results led to the proposal of a mechanism for the formation of adrenochrome and other oxidation products from adrenaline.

Romero, A, Caldeira J, Legall J, Moura I, Moura JJ, Romao MJ.  1996.  Crystal structure of flavodoxin from Desulfovibrio desulfuricans ATCC 27774 in two oxidation states, Jul 1. Eur J Biochem. 239:190-6., Number 1 AbstractWebsite

The crystal structures of the flavodoxin from Desulfovibrio desulfuricans ATCC 27774 have been determined and refined for both oxidized and semi-reduced forms to final crystallographic R-factors of 17.9% (0.8-0.205-nm resolution) and 19.4% (0.8-0.215-nm resolution) respectively. Native flavodoxin crystals were grown from ammonium sulfate with cell constants a = b = 9.59 nm, c=3.37nm (oxidized crystals) and they belong to space group P3(2)21. Semireduced crystals showed some changes in cell dimensions: a = b = 9.51 nm, c=3.35 nm. The three-dimensional structures are similar to other known flavodoxins and deviations are found essentially in the isoalloxazine ring environment. Conformational changes are observed between both redox states and a flip of the Gly61-Met62 peptide bond occurs upon one-electron reduction of the FMN group. These changes influence the redox potential of the oxidized/semiquinone couple. Modulation of the redox potentials is known to be related to the association constant of the FMN group to the protein. The flavodoxin from D. desulfuricans now studied has a large span between E2 (oxidized --> semiquinone) and E1 (semiquinone --> hydroquinone) redox potentials, both these values being substantially more positive within known flavodoxins. A comparison of their FMN environment was made in both oxidation states in order to correlate functional and structural differences.

Macedo, AL, Besson S, Moreno C, Fauque G, Moura JJ, Moura I.  1996.  Characterization of a 7Fe ferredoxin isolated from the marine denitrifier Pseudomonas nautica strain 617: spectroscopic and electrochemical studies, Dec 13. Biochem Biophys Res Commun. 229:524-30., Number 2 AbstractWebsite

A 7Fe ferredoxin, isolated from the marine denitrifier Pseudomonas nautica strain 617, was characterized. The NH2-terminal sequence analysis, performed until residue number 56, shows a high similarity with the 7Fe ferredoxins isolated from Azotobacter vinelandii, Pseudomonas putida, and Pseudomonas stutzeri. EPR and NMR spectroscopies identify the presence of both [3Fe-4S] and [4Fe-4S] clusters, with cysteinyl coordination. The electrochemical studies on [Fe-S] clusters show that a fast diffusion-dominated electron transfer, promoted by Mg(II), takes place between the ferredoxin and the glassy carbon electrode. Square wave voltammetry studies gave access to the electrosynthesis of a 4Fe center formed within the [3Fe-4S] core. The [3Fe-4S] cluster exhibited two reduction potentials at -175 and -680 +/- 10 mV and the [4Fe-4S] cluster was characterized by an unusually low reduction potential of -715 +/- 10 mV, at pH 7.6

Pereira, AS, Franco R, Feio MJ, Pinto C, Lampreia J, Reis MA, Calvete J, Moura I, Beech I, Lino AR, Moura JJ.  1996.  Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel, Apr 16. Biochem Biophys Res Commun. 221:414-21., Number 2 AbstractWebsite

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed.

Pereira, AS, Franco R, Feio MJ, Pinto C, Lampreia J, Reis MA, Calvete J, Moura I, Beech I, Lino AR, Moura JJG.  1996.  Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel. Biochemical And Biophysical Research Communications. {221}:{414-421}., Number {2}, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495: ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS Abstract

This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed. (C) 1996 Academic Press, Inc.

Romero, A, Caldeira J, Legall J, Moura I, Moura JJG, Romao MJ.  1996.  Crystal structure of flavodoxin from Desulfovibrio desulfuricans ATCC 27774 in two oxidation states. European Journal of Biochemistry. 239:190-196., Number 1 AbstractWebsite
n/a
Zajc, A, Romao MJ, Turk B, Huber R.  1996.  Crystallographic and fluorescence studies of ligand binding to N-carbamoylsarcosine amidohydrolase from Arthrobacter sp. Journal of Molecular Biology. 263:269-283., Number 2 AbstractWebsite
n/a
1995
Archer, M, Huber R, Tavares P, Moura I, Moura JJ, Carrondo MA, Sieker LC, Legall J, Romao MJ.  1995.  Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8 A resolution: a novel non-heme iron protein structure, Sep 1. J Mol Biol. 251:690-702., Number 5 AbstractWebsite

The crystal structure of desulforedoxin from Desulfovibrio gigas, a new homo-dimeric (2 x 36 amino acids) non-heme iron protein, has been solved by the SIRAS method using the indium-substituted protein as the single derivative. The structure was refined to a crystallographic R-factor of 16.9% at 1.8 A resolution. Native desulforedoxin crystals were grown from either PEG 4K or lithium sulfate, with cell constants a = b = 42.18 A, c = 72.22 A (for crystals grown from PEG 4K), and they belong to space group P3(2)21. The indium-substituted protein crystallized isomorphously under the same conditions. The 2-fold symmetric dimer is firmly hydrogen bonded and folds as an incomplete beta-barrel with the two iron centers placed on opposite poles of the molecule. Each iron atom is coordinated to four cysteinyl residues in a distorted tetrahedral arrangement. Both iron atoms are 16 A apart but connected across the 2-fold axis by 14 covalent bonds along the polypeptide chain plus two hydrogen bonds. Desulforedoxin and rubredoxin share some structural features but show significant differences in terms of metal environment and water structure, which account for the known spectroscopic differences between rubredoxin and desulforedoxin.

Franco, R, Moura JJ, Moura I, Lloyd SG, Huynh BH, Forbes WS, Ferreira GC.  1995.  Characterization of the iron-binding site in mammalian ferrochelatase by kinetic and Mossbauer methods, Nov 3. J Biol Chem. 270:26352-7., Number 44 AbstractWebsite

All organisms utilize ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) to catalyze the terminal step of the heme biosynthetic pathway, which involves the insertion of ferrous ion into protoporphyrin IX. Kinetic methods and Mossbauer spectroscopy have been used in an effort to characterize the ferrous ion-binding active site of recombinant murine ferrochelatase. The kinetic studies indicate that dithiothreitol, a reducing agent commonly used in ferrochelatase activity assays, interferes with the enzymatic production of heme. Ferrochelatase specific activity values determined under strictly anaerobic conditions are much greater than those obtained for the same enzyme under aerobic conditions and in the presence of dithiothreitol. Mossbauer spectroscopy conclusively demonstrates that, under the commonly used assay conditions, dithiothreitol chelates ferrous ion and hence competes with the enzyme for binding the ferrous substrate. Mossbauer spectroscopy of ferrous ion incubated with ferrochelatase in the absence of dithiothreitol shows a somewhat broad quadrupole doublet. Spectral analysis indicates that when 0.1 mM Fe(II) is added to 1.75 mM ferrochelatase, the overwhelming majority of the added ferrous ion is bound to the protein. The spectroscopic parameters for this bound species are delta = 1.36 +/- 0.03 mm/s and delta EQ = 3.04 +/- 0.06 mm/s, distinct from the larger delta EQ of a control sample of Fe(II) in buffer only. The parameters for the bound species are consistent with an active site composed of nitrogenous/oxygenous ligands and inconsistent with the presence of sulfur ligands. This finding is in accord with the absence of conserved cysteines among the known ferrochelatase sequences. The implications these results have with regard to the mechanism of ferrochelatase activity are discussed.

Romao, MJ, Archer M, Moura I, Moura JJ, Legall J, Engh R, Schneider M, Hof P, Huber R.  1995.  Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas, Nov 17. Science. 270:1170-6., Number 5239 AbstractWebsite

The crystal structure of the aldehyde oxido-reductase (Mop) from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas has been determined at 2.25 A resolution by multiple isomorphous replacement and refined. The protein, a homodimer of 907 amino acid residues subunits, is a member of the xanthine oxidase family. The protein contains a molybdopterin cofactor (Mo-co) and two different [2Fe-2S] centers. It is folded into four domains of which the first two bind the iron sulfur centers and the last two are involved in Mo-co binding. Mo-co is a molybdenum molybdopterin cytosine dinucleotide. Molybdopterin forms a tricyclic system with the pterin bicycle annealed to a pyran ring. The molybdopterin dinucleotide is deeply buried in the protein. The cis-dithiolene group of the pyran ring binds the molybdenum, which is coordinated by three more (oxygen) ligands.