Ribeiro, DO, Bonnardel F, Palma AS, Carvalho ALM, Perez S.
2024.
CBMcarb-DB: interface of the three-dimensional landscape of carbohydrate-binding modules, 2024/06/26. Carbohydrate Chemistry: Chemical and Biological Approaches Volume 46. 46(
Pilar Rauter, Amélia, Queneau, Yves, Palma, Angelina Sá, Eds.).: Royal Society of Chemistry
AbstractCarbohydrate-binding-modules (CBMs) are discrete auxiliary protein modules with a non-catalytic carbohydrate-binding function and that exhibit a great diversity of binding specificities. CBMcarb-DB is a curated database that classifies the three-dimensional structures of CBM–carbohydrate complexes determined by single-crystal X-ray diffraction methods and solution NMR spectroscopy. We designed the database architecture and the navigation tools to query the database with the Protein Data Bank (PDB), UniProtKB, and GlyTouCan (universal glycan repository) identifiers. Special attention was devoted to describing the bound glycans using simple graphical representation and numerical format for cross-referencing to other glycosciences and functional data databases. CBMcarb-DB provides detailed information on CBMs and their bound oligosaccharides and features their interactions using several open-access applications. We also describe how the curated information provided by CBMcarb-DB can be integrated with AI algorithms of 3D structure prediction, facilitating structure–function studies. Also in this chapter, we discuss the exciting convergence of CBMcarb-DB with the glycan array repository, which serves as a valuable resource for investigating the specific binding interactions between glycans and various biomolecular targets. The interaction of the two fields represents a significant milestone in glycosciences. CBMcarb-DB is freely available at https://cbmdb.glycopedia.eu/ and https://cbmcarb.webhost.fct.unl.pt.
Choroba, K, Machura B, Erfurt K, Casimiro {AR}, Cordeiro S, Baptista {PV}, Fernandes {AR}.
2024.
Copper(II) Complexes with 2,2′:6′,2″-Terpyridine Derivatives Displaying Dimeric Dichloro−μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models. Journal Of Medicinal Chemistry. 67:5813–5836., Number 7: ACS - American Chemical Society
AbstractEight 2,2′:6′,2″-terpyridines, substituted at the 4′-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.