Export 1483 results:
Sort by: Author Title Type [ Year  (Desc)]
2021
Mouquinho, A, Sanchez-Sobrado O, Haque S, Centeno P, Alexandre MF, Ribeiro G, Boane JLN, Mateus T, Menda UD, Águas H, Fortunato E, Martins R, Mendes MJ.  2021.  Photonic Strategies for Photovoltaics: New Advances Beyond Optics. Modern Environmental Science and Engineering. 7(7):642-652.
Sine, AG.  2021.  STRENGTHENING OF REINFORCED CONCRETE ELEMENTS WITH UHPFRC. Faculty of Engineering of the University of Porto. (Mário Pimentel, Sandra Nunes, Américo Dimande, Eds.)., Portostrengthening_of_rc_elements_with_uhpfrc_agsine.pdf
Shlapa, Y, Timashkov I, Veltruska K, Siposova K, Garcarova I, Musatov A, Solopan S, Kubovcikova M, Belous A.  2021.  Structural and Physical-Chemical Characterization of Redox Active CeO2 Nanoparticles Synthesized by the Precipitation in the Water-Alcohol Solutions. Nanotechnology. 32(315706 )
Silva, C, Martins J, Deuermeier J, Pereira M, Rovisco A, Barquinha P, Goes J, Fortunato E, R M, Kiazadeh A.  2021.  Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxide. Electronics Material. 2(2):105-115.
Barroca-Ferreira, J, Cruz-Vicente P, Santos MFA, Rocha SM, Santos-Silva T, Maia CJ, Passarinha LA.  2021.  Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure. International Journal of Molecular Sciences. 22, Number 18 AbstractWebsite

Background: The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. Methods: The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. Results: The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of  55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein’s structural stability. Conclusions: A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.

Inocêncio, S, Cordeiro T, Matos I, Florence Danède, Sotomayor JC, Fonseca IM, Correia NT, Corvo MC, Dionísio M.  2021.  Ibuprofen incorporated into unmodified and modified mesoporous silica: From matrix synthesis to drug release. Microporous and Mesoporous Materials. 310:110541. AbstractWebsite

Aiming to rationalize the release profile of an incorporated pharmaceutical drug in terms of its mobility, driven by guest-host interactions, the poorly water-soluble ibuprofen drug was loaded in a mesoporous inorganic silica matrix with unmodified (MCM-41) and modified surface (MCM-41sil) by post-synthesis silylation, both having pore sizes   3 nm. The single calorimetric detection of a broad glass transition step for both ibuprofen composites indicates full drug amorphization, confirmed by the only appearance of an amorphous halo in the powder XRD patterns. Moreover, a gradient profile is disclosed by the heat flux derivative plot in the glass transition, in coherence with the thermogravimetric profile that shows a multi-step decomposition trace for confined ibuprofen in these matrixes. While identical guest dynamics, as probed by dielectric relaxation spectroscopy, were found in both dehydrated composites, a significant molecular population with faster relaxation exists in the hydrated state for the drug inside the unmodified matrix. This was rationalized as the concurrence of true confinement effects, which manifest under nanometer dimensions, and greater water affinity of the unmodified matrix, forcing the drug molecules to be placed mostly in the pore core. Finite size effects are also felt in both dehydrated composites, however guest-host interactions give origin to a dominant population with slowed down mobility that governs the overall guest dynamics. In spite of an inferior number of active sites for drug adsorption in the silylated matrix, a faster ibuprofen delivery in phosphate buffer (pH = 6.8) was observed when the drug is released from unmodified MCM-41 in the hydrated state. Therefore, our results suggest that a relevant role is played by water molecules, which impair a strong guest adsorption in the host surface more efficiently than the limited surface modification, influence the higher ratio of a faster population in the pore core and facilitate the diffusion of the aqueous releasing media inside pores.

dos Santos, R, Romão MJ, Roque ACA, Carvalho AL.  2021.  Magnetic particles used in a new approach for designed protein crystallization. CrystEngComm. 23:1083-1090.: The Royal Society of Chemistry AbstractWebsite

After more than one hundred and thirty thousand protein structures determined by X-ray crystallography{,} the challenge of protein crystallization for 3D structure determination remains. In the quest for additives for efficient protein crystallization{,} inorganic materials emerge as an alternative. Magnetic particles (MPs) are versatile inorganic materials{,} easy to use{,} modify and manipulate in a wide range of biological assays. The potential of using functionalised MPs as crystallization chaperones for protein crystallization was shown in this work. MPs with distinct coatings were rationally designed to promote protein crystallization by affinity-triggered heterogeneous nucleation. Hen egg white lysozyme (HEWL) and trypsin{,} were crystallized in the presence of MPs either bare or coated with a polysaccharide (chitin) or a protein (casein){,} respectively. The addition of MPs was characterized in terms of bound protein to the MPs{,} crystal morphology{,} time-lapse of crystal emergence{,} crystallization yield fold change and crystal diffraction quality for structure determination. The MPs additives have shown to bind to the respective target protein{,} and to promote nucleation and crystal growth without compromising crystal morphology. On the other hand{,} MPs addition led to faster detectable crystal emergence and up to 13 times higher crystallization yield{,} addressing some the challenges in protein crystallization{,} the main bottleneck of macromolecular crystallography. Structure determination of the protein crystallized in the presence of MPs revealed that the structural characteristics of the protein remained unchanged{,} as shown by the superposition with PDB annotated proteins. Moreover{,} and unlike most reported cases{,} it was possible to exclude the inhibitor benzamidine during trypsin crystallisation{,} which is a remarkable result opening new prospects in enzyme engineering and drug design. Our results show that MPs coated with affinity ligands to target proteins can be used as controlled and tailor-made crystallization inducers.

Silva, MA, Salgueiro CA.  2021.  Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. International Journal of Molecular Sciences. 22, Number 16 AbstractWebsite

Environmental changes trigger the continuous adaptation of bacteria to ensure their survival. This is possible through a variety of signal transduction pathways involving chemoreceptors known as methyl-accepting chemotaxis proteins (MCP) that allow the microorganisms to redirect their mobility towards favorable environments. MCP are two-component regulatory (or signal transduction) systems (TCS) formed by a sensor and a response regulator domain. These domains synchronize transient protein phosphorylation and dephosphorylation events to convert the stimuli into an appropriate cellular response. In this review, the variability of TCS domains and the most common signaling mechanisms are highlighted. This is followed by the description of the overall cellular topology, classification and mechanisms of MCP. Finally, the structural and functional properties of a new family of MCP found in Geobacter sulfurreducens are revisited. This bacterium has a diverse repertoire of chemosensory systems, which represents a striking example of a survival mechanism in challenging environments. Two G. sulfurreducens MCP—GSU0582 and GSU0935—are members of a new family of chemotaxis sensor proteins containing a periplasmic PAS-like sensor domain with a c-type heme. Interestingly, the cellular location of this domain opens new routes to the understanding of the redox potential sensing signaling transduction pathways.

Fernandes, TM, Morgado L, Turner DL, Salgueiro CA.  2021.  Protein Engineering of Electron Transfer Components from Electroactive Geobacter Bacteria. Antioxidants. 10, Number 6 AbstractWebsite

Electrogenic microorganisms possess unique redox biological features, being capable of transferring electrons to the cell exterior and converting highly toxic compounds into nonhazardous forms. These microorganisms have led to the development of Microbial Electrochemical Technologies (METs), which include applications in the fields of bioremediation and bioenergy production. The optimization of these technologies involves efforts from several different disciplines, ranging from microbiology to materials science. Geobacter bacteria have served as a model for understanding the mechanisms underlying the phenomenon of extracellular electron transfer, which is highly dependent on a multitude of multiheme cytochromes (MCs). MCs are, therefore, logical targets for rational protein engineering to improve the extracellular electron transfer rates of these bacteria. However, the presence of several heme groups complicates the detailed redox characterization of MCs. In this Review, the main characteristics of electroactive Geobacter bacteria, their potential to develop microbial electrochemical technologies and the main features of MCs are initially highlighted. This is followed by a detailed description of the current methodologies that assist the characterization of the functional redox networks in MCs. Finally, it is discussed how this information can be explored to design optimal Geobacter-mutated strains with improved capabilities in METs.

Fernandes, TM, Folgosa F, Teixeira M, Salgueiro CA, Morgado L.  2021.  Structural and functional insights of GSU0105, a unique multiheme cytochrome from G. sulfurreducens. Biophysical Journal. AbstractWebsite

Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and β-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (−154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.

Portela, PC, Silva MA, Teixeira LR, Salgueiro CA.  2021.  A unique aromatic residue modulates the redox range of a periplasmic multiheme cytochrome from Geobacter metallireducens. Journal of Biological Chemistry. 296:100711. AbstractWebsite

Geobacter bacteria are able to transfer electrons to the exterior of the cell and reduce extracellular electron acceptors including toxic/radioactive metals and electrode surfaces, with potential applications in bioremediation or electricity harvesting. The triheme c-type cytochrome PpcA from Geobacter metallireducens plays a crucial role in bridging the electron transfer from the inner to the outer membrane, ensuring an effective extracellular electron transfer. This cytochrome shares 80% identity with PpcA from Geobacter sulfurreducens, but their redox properties are markedly different, thus determining the distinctive working redox potential ranges in the two bacteria. PpcA from G. metallireducens possesses two extra aromatic amino acids (Phe-6 and Trp-45) in its hydrophobic heme core, whereas PpcA from G. sulfurreducens has a leucine and a methionine in the equivalent positions. Given the different nature of these residues in the two cytochromes, we have hypothesized that the extra aromatic amino acids could be partially responsible for the observed functional differences. In this work, we have replaced Phe-6 and Trp-45 residues by their nonaromatic counterparts in PpcA from G. sulfurreducens. Using redox titrations followed by UV–visible and NMR spectroscopy we observed that residue Trp-45 shifted the redox potential range 33% toward that of PpcA from G. sulfurreducens, whereas Phe-6 produced a negligible effect. For the first time, it is shown that the inclusion of an aromatic residue at the heme core can modulate the working redox range in abundant periplasmic proteins, paving the way to engineer bacterial strains for optimal microbial bioelectrochemical applications.

2020
Silva, W, Zanatta M, Ferreira AS, Corvo MC, Cabrita EJ.  2020.  Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis, {OCT}. International Journal of Molecular Sciences. 20:7745., Number {20} AbstractWebsite

{In the last few years, ionic liquids (ILs) have been the focus of extensive studies concerning the relationship between structure and properties and how this impacts their application. Despite a large number of studies, several topics remain controversial or not fully answered, such as: the existence of ion pairs, the concept of free volume and the effect of water and its implications in the modulation of ILs physicochemical properties. In this paper, we present a critical review of state-of-the-art literature regarding structure-property relationship of ILs, we re-examine analytical theories on the structure-property correlations and present new perspectives based on the existing data. The interrelation between transport properties (viscosity, diffusion, conductivity) of IL structure and free volume are analysed and discussed at a molecular level. In addition, we demonstrate how the analysis of microscopic features (particularly using NMR-derived data) can be used to explain and predict macroscopic properties, reaching new perspectives on the properties and application of ILs.}

Barrulas, V, R, Nunes AD, Sequeira SO, Casimiro MH, Corvo MC.  2020.  Cleaning fungal stains on paper with hydrogels: The effect of pH control, {AUG}. International Biodeterioration & Biodegradation. 152:104996. AbstractWebsite

{Fungal stains affect documents and artworks on paper all over the world, diminishing their chemical stability and compromising their readability. The present paper studies the suitability of agarose and gellan gum hydrogels to remove fungal stains from paper, using paper impregnated with alizarin as a model system to simulate the most common colorant molecules produced by fungi - polyketide quinones. The effect of pH variation on the efficacy of the gels was evaluated by UV spectrometry. The results show that the cleaning efficacy of the gels greatly depends on the gel matrix, the colorant molecules, and the pH balance of the process.}

Beola, L, Asín L, Roma-Rodrigues C, Fernandez-Afonso Y, Fratila {RM }, Serantes D, Ruta S, Chantrell {RW }, Fernandes {AR}, Baptista {PV}, {de la Fuente} {JM }, Grazu V, Gutierrez L.  2020.  The intracellular number of magnetic nanoparticles modulates the apoptotic death pathway after magnetic hyperthermia treatment, sep. ACS Applied Materials & Interfaces. 12:43474–43487., Number 39: ACS - American Chemical Society Abstract

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1−7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.

Oliveira, {BB }, Veigas B, Carlos {FF}, Sánchez-Melsió A, Balcázar {JL}, Borrego {CM }, Baptista {PV}.  2020.  Water safety screening via multiplex LAMP-Au-nanoprobe integrated approach, nov. Science of the Total Environment. 741: Elsevier Abstract

Contaminated water resources remain a major global concern regarding public health. The majority of water safety protocols include indicators of microbial contamination to evaluate the potential risk to public health and are key elements of quality guidelines. Among these, markers for total coliforms and fecal coliforms are strong indicators of co-contamination with other pathogens. Traditional methods, recurring to slow and cumbersome culture-based approaches, have been gradually replaced by molecular methods, capable of faster and more specific screening. These are usually PCR-based methods that may allow for multiple pathogen detection but require dedicated laboratory equipment, hindering the rapid on-site assessment. Here, we used a multiplex Loop-Mediated Isothermal Amplification (mLAMP) strategy for the amplification of two markers associated with the contamination by total and fecal coliforms (e.g. Escherichia coli) — lacZ and uidA genes, respectively — thus allowing for single tube multiplex detection. The mLAMP products were then subject to an Au-nanoprobe colorimetric detection assay for precise discrimination of targets. This approach was validated in 22 water samples that were also screened for the presence of lacZ and uidA using standard and quantitative PCR, with the capability for discriminating the contamination level, e.g. a semi-quantitative evaluation of water quality.

Kordestani, N, Rudbari {HA}, Fernandes {AR}, Raposo {LR }, Baptista {PV}, Ferreira {DA }, Bruno G, Bella G, Scopelliti R, Braun {JD }, Herbert {DE }, Blacque O.  2020.  Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes, feb. ACS Combinatorial Science. 22:89–99., Number 2: ACS - American Chemical Society Abstract

A series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 μM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.

Branco, S, Mateus EP, Richter Gomes da Silva MD, Mendes D, Araujo Pereira MM, Schutz S, Paiva MR.  2020.  Identification of pheromone candidates for the eucalyptus weevil, Gonipterus platensis (Coleoptera, Curculionidae), FEB. JOURNAL OF APPLIED ENTOMOLOGY. 144:41-53., Number 1-2 Abstract

The eucalyptus weevil, Gonipterus platensis (Coleoptera, Curculionidae), is a major pest of eucalyptus plantations worldwide. To date, no pheromones have been identified for this species, despite their valuable potential as tools in monitoring or control strategies. Here we report the detection and identification of pheromones candidates of G. platensis. The weevil's volatile compounds were collected by solid phase micro extraction (SPME) and monolithic material sorption extraction (MMSE). Using Gas Chromatography coupled to Mass Spectrometry (GC/MS) analysis, eleven insect specific compounds were detected and identified: verbenene, cis-verbenol, trans-verbenol, verbenone, 2-oxo-1,8-cineole, 9-hydroxy-1,8-cineole, 2-alpha-hydroxy-1,8-cineole, 3-oxo-1,8-cineole, 2-beta-hydroxy-1,8-cineole, 3-alpha-hydroxy-1,8-cineole and 7-hydroxy-1,8-cineole. Three of these compounds, verbenene, cis-verbenol and trans-verbenol, were shown to be male-specific. Antennal sensitivity towards ten compounds emitted by G. platensis was detected using Gas Chromatography-Mass Spectrometry/Electroantennographic Detection (GC-MS/EAD). Extracts from virgin males proved to be attractive to virgin females in olfactometer bioassays. Further behavioural bioassays showed that both virgin females and virgin males were attracted to the male-specific compound cis-verbenol and that virgin females were attracted to trans-verbenol. Verbenone was attractive to mated females. Regarding 2-alpha-hydroxy-1.8-cineole and 2-oxo-1,8-cineole, which are produced by both sexes, the alcohol was attractive to virgin males and both the alcohol and the ketone were repellant to mated females. This is, to our knowledge, the first identification of pheromones candidates in Gonipterus spp. and also the first evidence of cineole metabolites acting as semiochemicals.

Fernandes, {AR}, c}a-Martins IM{\c, Santos {MFA }, Raposo {LR }, Mendes R, Marques J, Romão {CC }, Romão {MJ}, Santos-Silva T, Baptista {PV}.  2020.  Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, feb. ACS Biomaterials Science and Engineering. 6:1090–1101., Number 2: ACS - American Chemical Society Abstract

CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles-CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.

s}il{\u a}, MB{\c, a}b{\u a}caru AT{\u, s}sat VM{\c, Vasile {BS}tefan}{\c, Nea{\c s}u {IA}, Pinheiro T, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Matos {AP}, Marques {FM}.  2020.  Size-Dependent Biological Activities of Fluorescent Organosilane-Modified Zinc Oxide Nanoparticles, feb. Journal of biomedical nanotechnology. 16:137–152., Number 2: American Scientific Publishers Abstract

Surface modification of zinc oxide nanoparticles (ZnO NPs) is a strategy to tune their biocompatibility. Herein we report on the synthesis of a series of fluorescent ZnO NPs modified with 2-10% (3-glycidyloxypropyl)trimethoxysilane (GPTMS) to investigate the fluorescence properties and to explore their applications in microbiology and biomedicine. The obtained ZnO NPs were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). Size reduction occurred from ca. 13 nm in unmodified ZnO to 3-4 nm in silane-modified samples and fluorescence spectra showed size-dependent variation of the photoemission bands' intensity. The antibacterial and cytotoxic activities were investigated on Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and in ovarian (A2780) and prostate (PC3) cancer cells by tetrazolium/formazan-based methods. The antibacterial effect was higher for E. coli than S. aureus, while the cytotoxic activity was similar for both cancer cells and varied with the particle size. Cell death by apoptosis, and/or necrosis versus autophagy, were explored by flow cytometry using an Annexin V based-method and transmission electron microscopy (TEM). The main mechanism of ZnO NPs toxicity may involve the generation of reactive oxygen species (ROS) and the induction of apoptosis or autophagy. This work revealed the potential utility of GPTMS-modified ZnO NPs in the treatment of bacterial infection and cancer.

Kordestani, N, Rudbari HA, Fernandes AR, Raposo LR, Baptista PV, Ferreira D, Bruno G, Bella G, Scopelliti R, Braun JD, Herbert DE, Blacque O.  2020.  Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes, 2020. ACS Comb Sci. 22(2):89-99. AbstractWebsite

A series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 muM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.

Portela, PC, Dantas JM, Salgueiro CA.  2020.  Backbone, side chain and heme resonance assignment of the triheme cytochrome PpcA from Geobacter metallireducens in the oxidized state, 2020. Biomol NMR Assign. 14(1):31-36. AbstractWebsite

The bacterium Geobacter metallireducens is capable of transferring electrons to the cell exterior, a process designated extracellular electron transfer. This mechanism allows the microorganism to reduce extracellular acceptors such as Fe(III) (hydr)oxides and water toxic and/or radioactive contaminants including Cr(VI) and U(VI). It is also capable of oxidizing waste water aromatic organic compounds being an important microorganism for bioremediation of polluted waters. Extracellular electron transfer also allows electricity harvesting from microbial fuel cells, a promising sustainable form of energy production. However, extracellular electron transfer processes in this microorganism are still poorly characterized. The triheme c-type cytochrome PpcA from G. metallireducens is abundant in the periplasm and is crucial for electron transfer between the cytoplasm and the cell’s exterior. In this work, we report near complete assignment of backbone, side chain and heme resonances for PpcA in the oxidized state that will permit its structure determination and identification of interactions with physiological redox partners.

Vidossich, P, Castañeda Moreno LE, Mota C, de Sanctis D, Miscione GP, De Vivo M.  2020.  Functional Implications of Second-Shell Basic Residues for dUTPase DR2231 Enzymatic Specificity, 2020. ACS CatalysisACS Catalysis. 10(23):13825-13833.: American Chemical Society AbstractWebsite

Nucleotide-processing enzymes are key players in biological processes. They often operate through high substrate specificity for catalysis. How such specificity is achieved is unclear. Here, we dealt with this question by investigating all-α dimeric deoxyuridine triphosphate nucleotidohydrolases (dUTPases). Typically, these dUTPases hydrolyze either dUTP or deoxyuridine diphosphate (dUDP) substrates. However, the dUTPase enzyme DR2231 from Deinococcus radiodurans selectively hydrolyzes dUTP only, and not dUDP. By means of extended classical molecular dynamics simulations and quantum chemical calculations, we show that DR2231 achieves this specificity for dUTP via second-shell basic residues that, together with the two catalytic magnesium ions, contribute to properly orienting the γ-phosphate of dUTP in a prereactive state. This allows a nucleophilic water to be correctly placed and activated in order to perform substrate hydrolysis. We show that this enzymatic mechanism is not viable when dUDP is bound to DR2231. Importantly, in several other dUTPases capable of hydrolyzing either dUTP or dUDP, we detected that active site second-shell basic residues are more in number, anchoring the β-phosphate of the nucleotide substrate too, in contrast to what is observed in DR2231. Thus, strategically located basic second-shell residues mediate precise reactant positioning at the catalytic site, determining substrate specificity in dUTPases and possibly in other structurally similar nucleotide-processing metalloenzymes.Nucleotide-processing enzymes are key players in biological processes. They often operate through high substrate specificity for catalysis. How such specificity is achieved is unclear. Here, we dealt with this question by investigating all-α dimeric deoxyuridine triphosphate nucleotidohydrolases (dUTPases). Typically, these dUTPases hydrolyze either dUTP or deoxyuridine diphosphate (dUDP) substrates. However, the dUTPase enzyme DR2231 from Deinococcus radiodurans selectively hydrolyzes dUTP only, and not dUDP. By means of extended classical molecular dynamics simulations and quantum chemical calculations, we show that DR2231 achieves this specificity for dUTP via second-shell basic residues that, together with the two catalytic magnesium ions, contribute to properly orienting the γ-phosphate of dUTP in a prereactive state. This allows a nucleophilic water to be correctly placed and activated in order to perform substrate hydrolysis. We show that this enzymatic mechanism is not viable when dUDP is bound to DR2231. Importantly, in several other dUTPases capable of hydrolyzing either dUTP or dUDP, we detected that active site second-shell basic residues are more in number, anchoring the β-phosphate of the nucleotide substrate too, in contrast to what is observed in DR2231. Thus, strategically located basic second-shell residues mediate precise reactant positioning at the catalytic site, determining substrate specificity in dUTPases and possibly in other structurally similar nucleotide-processing metalloenzymes.

Fernandes, AR, Mendonça-Martins I, Santos MFA, Raposo LR, Mendes R, Marques J, Romão CC, Romão MJ, Santos-Silva T, Baptista PV.  2020.  Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, 2020. ACS Biomaterials Science & EngineeringACS Biomaterials Science & Engineering. 6(2):1090-1101.: American Chemical Society AbstractWebsite

CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles–CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles–CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.

Fernandes, AR, Mendonça-Martins I, Santos MFA, Raposo LR, Mendes R, Marques J, Romão CC, Romão MJ, Santos-Silva T, Baptista PV.  2020.  Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, 2020. ACS Biomaterials Science & Engineering. 6(2):1090-1101. AbstractWebsite
n/a
Beola, L, Asin L, Roma-Rodrigues C, Fernandez-Afonso Y, Fratila RM, Serantes D, Ruta S, Chantrell RW, Fernandes AR, Baptista PV, de la Fuente JM, Grazu V, Gutierrez L.  2020.  The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment, 2020. ACS Appl Mater Interfaces. 12(39):43474-43487. AbstractWebsite

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.