Export 1483 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
dos Santos, R, Iria I, Manuel AM, Leandro AP, Madeira CAC, Goncalves J, Carvalho AL, Roque AC.  2020.  Magnetic Precipitation: A New Platform for Protein Purification, 2020. Biotechnology JournalBiotechnology Journal. n/a(n/a):2000151.: John Wiley & Sons, Ltd AbstractWebsite

One of the trends in downstream processing comprises the use of ?anything-but-chromatography? methods to overcome the current downfalls of standard packed-bed chromatography. Precipitation and magnetic separation are two techniques already proven to accomplish protein purification from complex media, yet never used in synergy. With the aim to capture antibodies directly from crude extracts, a new approach combining precipitation and magnetic separation was developed and named as affinity magnetic precipitation. A precipitation screening, based on the Hofmeister series, and a commercial precipitation kit were tested with affinity magnetic particles to assess the best condition for antibody capture from human serum plasma and clarified cell supernatant. The best conditions were obtained when using PEG3350 as precipitant at 4°C for 1h, reaching 80% purity and 50% recovery of polyclonal antibodies from plasma, and 99% purity with 97% recovery yield of anti-TNFα mAb from cell supernatants. These results show that the synergetic use of precipitation and magnetic separation can represent an alternative for the efficient capture of antibodies. This article is protected by copyright. All rights reserved

Leisico, F, Godinho LM, Gonçalves IC, Silva SP, Carneiro B, Romão MJ, Santos-Silva T, de Sá-Nogueira I.  2020.  Multitask ATPases (NBDs) of bacterial ABC importers type I and their interspecies exchangeability, 2020. 10(1):19564. AbstractWebsite

ATP-binding cassette (ABC) type I importers are widespread in bacteria and play a crucial role in its survival and pathogenesis. They share the same modular architecture comprising two intracellular nucleotide-binding domains (NBDs), two transmembrane domains (TMDs) and a substrate-binding protein. The NBDs bind and hydrolyze ATP, thereby generating conformational changes that are coupled to the TMDs and lead to substrate translocation. A group of multitask NBDs that are able to serve as the cellular motor for multiple sugar importers was recently discovered. To understand why some ABC importers share energy-coupling components, we used the MsmX ATPase from Bacillus subtilis as a model for biological and structural studies. Here we report the first examples of functional hybrid interspecies ABC type I importers in which the NBDs could be exchanged. Furthermore, the first crystal structure of an assigned multitask NBD provides a framework to understand the molecular basis of the broader specificity of interaction with the TMDs.

Machado, JF, Sequeira D, Marques F, Piedade MFM, Villa de Brito MJ, Helena Garcia M, Fernandes AR, Morais TS.  2020.  New copper(I) complexes selective for prostate cancer cells, 2020. Dalton Trans. 49(35):12273-12286. AbstractWebsite

A new family of eighteen Cu(i) complexes of the general formula [Cu(PP)(LL)][BF4], where PP is a phosphane ligand and LL represents an N,O-heteroaromatic bidentate ligand, has been synthesized and fully characterized by classical analytical and spectroscopic methods. Five complexes of this series were also characterized by single crystal X-ray diffraction studies. The cytotoxicity of all compounds was evaluated in breast (MCF7) and prostate (LNCap) human cancer cells and in a normal prostate cell line (RWPE). In general, all compounds showed higher cytotoxicity for the prostate cancer cells than for the breast cells, with IC50 values in the range 0.2-2 muM after 24 h of treatment. The most cytotoxic compound, [Cu(dppe)(2-ap)][BF4] (16), where dppe = 1,2-bis(diphenylphosphano) ethane and 2-ap = 2-acetylpyridine, showed a high level of cellular internalization, generation of intracellular ROS and activation of the cell death mechanism via apoptosis/necrosis. Owing to its high cytotoxic activity for LNCap cells, being 70-fold higher than that for normal prostate cells (RWPE), complex (16) was found to be the most promising for further research in prostate cancer models.

Chagas, R, Silva PES, Fernandes SN, Žumer S, Godinho MH.  2020.  Playing the blues, the greens and the reds with cellulose-based structural colours, 2020. Faraday Discussions. 223:247-260.: The Royal Society of Chemistry AbstractWebsite

Structural vivid colours can arise from the interference of light reflected from structures exhibiting periodicity on scales in the range of visible wavelengths. This effect is observed with light reflected from cell-walls of some plants and exoskeletons of certain insects. Sometimes the colour sequence observed for these structures consists of nearly circular concentric rings that vary in colour from Red, Orange, Yellow, Green, Cyan to Blue, from the periphery to the centre, similarly to the colour scheme sequence observed for the rainbow (ROYGB). The sequence of colours has been found for solid films obtained from droplets of aqueous cellulose nanocrystals (CNCs) suspensions and attributed to a “coffee ring” effect. In this work, coloured lyotropic solutions and solid films obtained from a cellulose derivative in the presence of trifluoroacetic acid (TFA), which acts as a “reactive solvent”, are revisited. The systems were investigated with spectroscopy, using circularly and linearly polarised light, coupled with a polarised optical microscope (POM) and scanning electron microscopy (SEM). The lyotropic cholesteric liquid crystalline solutions were confined in capillaries to simplify 1D molecular diffusion along the capillary where an unexpected sequence of the structural colours was observed. The development and reappearance of the sequence of vivid colours seem consistent with the reaction–diffusion of the “reactive solvent” in the presence of the cellulosic chains. The strong TFA acts as an auto-catalyst for the chemical reaction between TFA and the hydroxyl groups, existing along the cellulosic chain, and diffuses to the top and bottom along the capillaries, carrying dissolved cellulosic chains. Uncovering the precise mechanism of colour sequence and evolution over time in cellulosic lyotropic solutions has important implications for future optical/sensors applications and for the understanding of the development of cellulose-based structures in nature.

Alves-Barroco, C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR.  2020.  Singularities of Pyogenic Streptococcal Biofilms – From Formation to Health Implication, 2020. 11(3179) AbstractWebsite

Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.

Gomes, AS, Ramos H, Gomes S, Loureiro JB, Soares J, Barcherini V, Monti P, Fronza G, Oliveira C, Domingues L, Bastos M, Dourado DFAR, Carvalho AL, Romão MJ, Pinheiro B, Marcelo F, Carvalho A, Santos MMM, Saraiva L.  2020.  SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations, 2020. 1864(1):129440. AbstractWebsite

BackgroundHalf of human cancers harbour TP53 mutations that render p53 inactive as a tumor suppressor. As such, reactivation of mutant (mut)p53 through restoration of wild-type (wt)-like function represents one of the most promising therapeutic strategies in cancer treatment. Recently, we have reported the (S)-tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a new reactivator of wt and mutp53 R280K with in vitro and in vivo p53-dependent antitumor activity. The present work aimed a mechanistic elucidation of mutp53 reactivation by SLMP53-1.
Methods and results
By cellular thermal shift assay (CETSA), it is shown that SLMP53-1 induces wt and mutp53 R280K thermal stabilization, which is indicative of intermolecular interactions with these proteins. Accordingly, in silico studies of wt and mutp53 R280K DNA-binding domain with SLMP53-1 unveiled that the compound binds at the interface of the p53 homodimer with the DNA minor groove. Additionally, using yeast and p53-null tumor cells ectopically expressing distinct highly prevalent mutp53, the ability of SLMP53-1 to reactivate multiple mutp53 is evidenced.
Conclusions
SLMP53-1 is a p53-activating agent with the ability to directly target wt and a set of hotspot mutp53.
General Significance
This work reinforces the encouraging application of SLMP53-1 in the personalized treatment of cancer patients harboring distinct p53 status.

Oliveira, AR, Mota C, Mourato C, Domingos RM, Santos MFA, Gesto D, Guigliarelli B, Santos-Silva T, Romão MJ, Pereira IAC.  2020.  Towards the mechanistic understanding of enzymatic CO2 reduction, 2020. ACS CatalysisACS Catalysis. : American Chemical Society AbstractWebsite

Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its cata-lytic characterization and crystal structures in oxidised and reduced states. The enzyme has very high activi-ty for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidised and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mecha-nism of this conversion.Reducing CO2 is a challenging chemical transformation that biology solves easily, with high efficiency and specificity. In particular, formate dehydrogenases are of great interest since they reduce CO2 to formate, a valuable chemical fuel and hydrogen storage compound. The metal-dependent formate dehydrogenases of prokaryotes can show high activity for CO2 reduction. Here, we report an expression system to produce recombinant W/Sec-FdhAB from Desulfovibrio vulgaris Hildenborough fully loaded with cofactors, its cata-lytic characterization and crystal structures in oxidised and reduced states. The enzyme has very high activi-ty for CO2 reduction and displays remarkable oxygen stability. The crystal structure of the formate-reduced enzyme shows Sec still coordinating the tungsten, supporting a mechanism of stable metal coordination during catalysis. Comparison of the oxidised and reduced structures shows significant changes close to the active site. The DvFdhAB is an excellent model for studying catalytic CO2 reduction and probing the mecha-nism of this conversion.

Adeoye, O, Conceição J, Serra PA, da Silva AB, Duarte N, Guedes RC, Corvo MC, Aguiar-Ricardo A, Jicsinszky L, Casimiro T, Cabral-Marques H.  2020.  Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method. Carbohydrate Polymers. 227:115287.: Elsevier AbstractWebsite

Lopinavir (LPV) is currently used in combination with ritonavir for the clinical management of HIV infections due to its limited oral bioavailability. Herein, we report the application of an in silico method to study cyclodextrin (CyD) host-guest molecular interaction with LPV for the rational selection of the best CyD for developing a CyD based LPV delivery system. The predicted CyD, a (2-hydroxy)propyl-gamma derivative with high degree of substitution (HP17-γ-CyD) was synthesized and comparatively evaluated with γ-CyD and the commercially available HP-γ-CyD. All complexes were prepared by supercritical assisted spray drying (SASD) and co-evaporation (CoEva) at molar ratios (1:1 and 1:2); and afterwards fully characterized. Results indicate a higher LPV amorphization and solubilization ability of HP17-γ-CyD. The SASD processing technology also enhanced LPV solubilization and release from complexes. The application of in silico methodologies is a feasible approach for the rational and/or deductive development of CyD drug delivery systems.

Strohmeier, P, Honnet C, Perner-Wilson H, Teyssier M, Fruchard B, Baptista AC, Steimle J.  2020.  Demo of PolySense: How to Make Electrically Functional Textiles. CHI Conference on Human Factors in Computing Systems. :1-4. Abstract

We demonstrate a simple and accessible method for enhancing textiles with custom piezo-resistive properties. Based on in-situ polymerization, our method offers seamless integration at the material level, preserving a textile's haptic and mechanical properties. We demonstrate how to enhance a wide set of fabrics and yarns using only readily available tools. During each demo session, conference attendees may bring textile samples which will be polymerized in a shared batch. Attendees may keep these samples. While the polymerization is happening, attendees can inspect pre-made samples and explore how these might be integrated in functional circuits. Examples objects created using polymerization include rapid manufacturing of on-body interfaces, tie-dyed motion-capture clothing, and zippers that act as potentiometers.

dos Santos, LM, Bernard FL, Polesso BB, Pinto IS, Frankenberg CC, Corvo MC, Almeida PL, Cabrita E, Menezes S, Einloft S.  2020.  Designing silica xerogels containing RTIL for CO2 capture and CO2/CH4 separation: Influence of ILs anion, cation and cation side alkyl chain length and ramification. Journal of Environmental Management. 268:110340. AbstractWebsite

CO2 separation from natural gas is considered to be a crucial strategy to mitigate global warming problems, meet product specification, pipeline specs and other application specific requirements. Silica xerogels (SX) are considered to be potential materials for CO2 capture due to their high specific surface area. Thus, a series of silica xerogels functionalized with imidazolium, phosphonium, ammonium and pyridinium-based room-temperature ionic liquids (RTILs) were synthesized. The synthesized silica xerogels were characterized by NMR, helium pycnometry, DTA-TG, BET, SEM and TEM. CO2 sorption, reusability and CO2/CH4 selectivity were assessed by the pressure-decay technique. Silica xerogels containing IL demonstrated advantages compared to RTILs used as separation solvents in CO2 capture processes including higher CO2 sorption capacity and faster sorption/desorption. Using fluorinated anion for functionalization of silica xerogels leads to a higher affinity for CO2 over CH4. The best performance was obtained by SX- [bmim] [TF2N] (223.4 mg CO2/g mg/g at 298.15 K and 20 bar). Moreover, SX- [bmim] [TF2N] showed higher CO2 sorption capacity as compared to other reported sorbents. CO2 sorption and CO2/CH4 selectivity results were submitted to an analysis of variance and the means compared using Tukey's test (5%).

Lopes, LGF, Sadler PJ, Bernardes-Génisson V, Moura JJG, Chauvin R, Bernhardt PV, Sousa EHS.  2020.  The fundamental importance of basic science: examples of high-impact discoveries from an international Chemistry Network. Quim Nova. 43:1176-1189.
Valério, GN, Gutierrez-Merino C, Nogueira F, Moura I, Moura JJG, Samhan-Arias AK.  2020.  Human erythrocytes exposure to juglone leads to an increase of superoxide anion production associated with cytochrome b5 reductase uncoupling. Biochim Biophys Acta Bioenerg. EPub
Mouquinho, A, Corvo MC, Almeida PL, Feio GM, Sotomayor J.  2020.  Influence of chain length of prepolymers in permanent memory effect of PDLC assessed by solid-state NMR. Liquid Crystals. 47:522–530., Number 4: Taylor & Francis AbstractWebsite

The relationship between linear chain (ethylene oxide units) length of polymerisable monomers with morphology, electro-optical properties and 13C nuclear magnetic resonance (NMR) spectroscopy of the corresponding polymer-dispersed liquid crystal (PDLC) films was investigated. The preferred liquid crystal molecule alignment and permanent memory effect of PDLC were greatly influenced by the length of the molecular chain of prepolymers to be incorporated as a polymer matrix. By increasing the number of ethylene oxide in prepolymer chain and maintaining the number of functionalities (polymerisable groups in each monomer molecule), the permanent memory effect of PDLC increased, as proved by solid-state 13C NMR spectroscopy.

Li, K, Haque S, Martins A, Fortunato E, Martins R, Mendes MJ, Schuster CS.  2020.  Light trapping in solar cells: simple design rules to maximize absorption. Optica. 7(10):1377-1384.
dos Santos, R, Iria I, Manuel AM, Leandro AP, Madeira CAC, Gonçalves J, Carvalho AL, Roque ACA.  2020.  Magnetic Precipitation: A New Platform for Protein Purification. Biotechnology Journal. 15(9):2000151.
Sousa, DM, Chiappim W, Leitão JP, Lima JC, Ferreira I.  2020.  Microwave synthesis of silver sulfide and silver nanoparticles: light and time influence. ACS omega. 5:12877-12881.
Zanatta, M, Simon NM, Dupont J.  2020.  The Nature of Carbon Dioxide in Bare Ionic Liquid. ChemSusChem. 13:3101-3109. AbstractWebsite

Ionic liquids (ILs) are among the most studied and promising materials for selective CO2 capture and transformation. The high CO2 sorption capacity associated with the possibility to activate this rather stable molecule through stabilization of ionic/radical species or covalent interactions either with the cation or anion has opened new avenues for CO2 functionalization. However, recent reports have demonstrated that another simpler and plausible pathway is also involved in the sorption/activation of CO2 by ILs associated with basic anions. Bare ILs or IL solutions contain almost invariable significant amounts of water and through interaction with CO2 generate carbonates/bicarbonates rather than carbamic acids or amidates. In these cases, the IL acts as a base and not a nucleophile and yields buffer‐like solutions that can be used to shift the equilibrium toward acid products in different CO2 reutilization reactions. In this Minireview, the emergence of IL buffer‐like solutions as a new reactivity paradigm in CO2 capture and activation is described and analyzed critically, mainly through the evaluation of NMR data.

Honnet, C, Perner-Wilson H, Teyssier M, Fruchard B, Steimle J, Baptista AC, Strohmeier P.  2020.  PolySense: Augmenting Textiles with Electrical Functionality using In-Situ Polymerization. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
Strohmeier, P, Honnet C, Pernet-Wilson H, Teyssier M, Fruchard B, Baptista AC, Steimle J.  2020.  PolySense: How to Make Electrically Functional Textiles. CHI Conference on Human Factors in Computing Systems .
Sousa, EHS, Diógenes ICN, Lopes LGF, Moura JJG.  2020.  Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry. J Biol Inorg Chem. 25:685.
Gavinho, SR, Soares MC, Borges JB, Silva JC, Nogueira ISá, Graça MP.  2020.  Preparation and Characterization of Zinc and Magnesium Doped Bioglasses. Nanoscience and Nanotechnology in Security and Protection against CBRN Threats. :465-475. AbstractWebsite

Peri-implantitis is an infectious disease that affects about one of five patients who receive a dental implant within 5 years after the surgery. To minimize this reaction the development of new biomaterials with antibacterial action is needed that can be used as a coating material in orthodontic implants. In addition, these biomaterials can be doped with several ions, which add specific properties that may act at the cellular level, such as increasing the angiogenesis efficiency. In this work, 45S5 Bioglass® has been used as the base material because it presents higher bioactivity compared to other biomaterials. To add antibacterial function and increase positive effects on bone metabolism, zinc and magnesium ions were introduced in the glass network. The main objective was the synthesis of the 45S5 glass by melt-quenching and study the biological performance as function of the zinc and magnesium concentrations. The structural and biological properties of the prepared samples are discussed.

Santos, TG, Oliveira JP, Machado MA.  2020.  Reliability and NDT Methods. Advanced Structured Materials. :265-295. Abstract

Composites are finding increased use in structural high demanding and high added value applications in advanced industries. A wide diversity exists in terms of matrix type, which can be either polymeric or metallic and type of reinforcements (ceramic, polymeric or metallic). Several technologies have been used to produce these composites; among them, additive manufacturing (AM) is currently being applied. In structural applications, the presence of defects due to fabrication is of major concern, since it affects the performance of a component with negative impact, which can affect, ultimately, human lives. Thus, the detection of defects is highly important, not only surface defects but also barely visible defects. This chapter describes the main types of defects expected in composites produced by AM. The fundamentals of different non-destructive testing (NDT) techniques are briefly discussed, as well as the state of the art of numerical simulation for several NDT techniques. A multiparametric and customized inspection system was developed based on the combination of innovative techniques in modelling and testing. Experimental validation with eddy currents, ultrasounds, X-ray and thermography is presented and analysed, as well as integration of distinctive techniques and 3D scanning characterization.

Pappas, CG, Wijerathne N, Sahoo JK, Jain A, Kroiss D, Sasselli IR, Pina AS, Lampel A, Ulijn RV.  2020.  Spontaneous Aminolytic Cyclization and Self-Assembly ofDipeptide Methyl Esters in Water. ChemSystemsChem. 2(e2000013):1-7.
Rodrigues, R, Palma SICJ, Correia VJ, Padrao I, Pais J, Banza M, Alves C, Deuermeier J, Martins C, Costa HMA, Ramou E, Silva Pereira C, Roque ACA.  2020.  Sustainable plant polyesters as substrates for optical gas sensors. Materials Today Bio. 8:100083. AbstractPDF

The fast and non-invasive detection of odors and volatile organic compounds (VOCs) by gas sensors and electronic
noses is a growing field of interest, mostly due to a large scope of potential applications. Additional drivers for the
expansion of the field include the development of alternative and sustainable sensing materials. The discovery
that isolated cross-linked polymeric structures of suberin spontaneously self-assemble as a film inspired us to
develop new sensing composite materials consisting of suberin and a liquid crystal (LC). Due to their stimuliresponsive and optically active nature, liquid crystals are interesting probes in gas sensing. Herein, we report
the isolation and the chemical characterization of two suberin types (from cork and from potato peels) resorting to
analyses of gas chromatography–mass spectrometry (GC-MS), solution nuclear magnetic resonance (NMR), and Xray photoelectron spectroscopy (XPS). The collected data highlighted their compositional and structural differences. Cork suberin showed a higher proportion of longer aliphatic constituents and is more esterified than potato
suberin. Accordingly, when casted it formed films with larger surface irregularities and a higher C/O ratio. When
either type of suberin was combined with the liquid crystal 5CB, the ensuing hybrid materials showed distinctive
morphological and sensing properties towards a set of 12 VOCs (comprising heptane, hexane, chloroform,
toluene, dichlormethane, diethylether, ethyl acetate, acetonitrile, acetone, ethanol, methanol, and acetic acid).
The optical responses generated by the materials are reversible and reproducible, showing stability for 3 weeks.
The individual VOC-sensing responses of the two hybrid materials are discussed taking as basis the chemistry of
each suberin type. A support vector machines (SVM) algorithm based on the features of the optical responses was
implemented to assess the VOC identification ability of the materials, revealing that the two distinct suberin-based
sensors complement each other, since they selectively identify distinct VOCs or VOC groups. It is expected that
such new environmentally-friendly gas sensing materials derived from natural diversity can be combined in arrays
to enlarge selectivity and sensing capacity.