Moreira, IP, Sato L, Alves C, Palma S, Roque AC.
2021.
Fish gelatin-based films for gas sensing. BIODEVICES 2021 - 14th International Conference on Biomedical Electronics and Devices; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021. :32–39.: SciTePress
AbstractElectronic noses (e-noses) mimic the complex biological olfactory system, usually including an array of gas sensors to act as the olfactory receptors and a trained computer with signal-processing and pattern recognition tools as the brain. In this work, a new stimuli-responsive material is shown, consisting of self-assembled droplets of liquid crystal and ionic liquid stabilised within a fish gelatin matrix. These materials change their opto/electrical properties upon contact with volatile organic compounds (VOCs). By using an in-house developed e-nose, these new gas-sensing films yield characteristic optical signals for VOCs from different chemical classes. A support vector machine classifier was implemented based on 12 features of the signals. The results show that the films are excellent identifying hydrocarbon VOCs (toluene, heptane and hexane) (95% accuracy) but lower performance was found to other VOCs, resulting in an overall 60.4% accuracy. Even though they are not reusable, these sustainable gas-sensing films are stable throughout time and reproducible, opening several opportunities for future optoelectronic devices and artificial olfaction systems.
Nunes, S, Pimentel M, Sousa C.
2021.
Mechanical and Fracture Behaviour of an HPFRC. Proceedings of RILEM-fib International Symposium on Fibre Reinforced Concrete, BEFIB2021. , Valencia
AbstractThe current paper analyses the mechanical and fracture behaviour of a High-Performance Fibre Reinforced Concrete (HPFRC). An HPFRC was developed in a previous stage aiming to simultaneously, maximise aggregates content, achieve a compressive strength of 90–120 MPa and maintaining self-compactability (SF1+VS2). The benefits of fibres hybridisation (using fibres with lengths of 13, 35 and 60 mm) on flexural strength are investigated using the wedge-splitting test, in order to achieve the highest performance while keeping a relatively low fibre content. The final selected mixture was characterised in terms of workability, compressive strength and modulus of elasticity. Six notched prismatic specimens were subjected to three-point bending tests, according to EN 14651, for classification according to the MC2010. Based on the bending tests data, the simplified linear characteristic tensile stress vs. crack opening displacement relationship of the HPFRC was evaluated according to MC2010 and two other analytical approaches available in the literature.
Aggarwal, SD, Lloyd* AJ, Yerneni SS, Narciso AR, Shepherd J, Roper DI, Dowson C, Filipe* SR, Hiller* NL.
2021.
A Molecular Link between Cell Wall Biosynthesis, Translation Fidelity, and Stringent Response in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA. 118(14):e2018089118.
Graça, MP, Teixeira SS, Gavinho SR, Valente MA, Salgueiro C, Nunes J, Soares PIP, Lança MC, Vieira T, Silva JC, Borges JB.
2021.
Nanomaterials for magnetic hyperthermia. European Journal of Public Health. 31(Supplement_2):ckab120.066.
AbstractCancer remains as one of the major causes of mortality worldwide. Recent advances in nanoparticles based therapy mark a new era on cancer treatment. Many groups have investigated biological/physical effects of nanoparticles on tumour cells and how these vary with physical parameters such as particle size, shape, concentration and distribution. Magnetic hyperthermia (MHT) can be an alternative or an add-value therapy with demonstrated effectiveness. MHT uses magnetic nanoparticles, which can be directly applied to the tumour, where, by applying an external ac magnetic field, will promote a localized temperature increment that can be controlled.
Teixeira, SS, Graça MPF, Lucas J, Valente MA, Soares PIP, Lança MC, Vieira T, Silva JC, Borges JP, Jinga L-I, Socol G, Salgueiro CM, Nunes J, Costa LC.
2021.
Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine. Nanomaterials. 11(1):193.
AbstractThe physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε′ (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.
Mouquinho, A, Sanchez-Sobrado O, Haque S, Centeno P, Alexandre MF, Ribeiro G, Boane JLN, Mateus T, Menda UD, Águas H, Fortunato E, Martins R, Mendes MJ.
2021.
Photonic Strategies for Photovoltaics: New Advances Beyond Optics. Modern Environmental Science and Engineering. 7(7):642-652.
Silva, C, Martins J, Deuermeier J, Pereira M, Rovisco A, Barquinha P, Goes J, Fortunato E, R M, Kiazadeh A.
2021.
Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxide. Electronics Material. 2(2):105-115.
Barroca-Ferreira, J, Cruz-Vicente P, Santos MFA, Rocha SM, Santos-Silva T, Maia CJ, Passarinha LA.
2021.
Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure. International Journal of Molecular Sciences. 22, Number 18
AbstractBackground: The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. Methods: The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. Results: The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of 55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein’s structural stability. Conclusions: A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.