Pina, AS, Guilherme M, Pereira AS, Fernandes CSM, Branco RJF, Lowe CR, Roque ACA.
2014.
A tailor made affinity pair “tag-receptor” for the purification of fusion proteins. ChemBioChem. 15(10):1423-35.
AbstractA novel affinity “tag–receptor” pair was developed as a generic platform for the purification of fusion proteins. The hexapeptide RKRKRK was selected as the affinity tag and fused to green fluorescent protein (GFP). The DNA fragments were designed, cloned in Pet-21c expression vector and expressed in E. coli host as soluble protein. A solid-phase combinatorial library based on the Ugi reaction was synthesized: 64 affinity ligands displaying complementary functionalities towards the designed tag. The library was screened by affinity chromatography in a 96-well format for binding to the RKRKRK-tagged GFP protein. Lead ligand A7C1 was selected for the purification of RKRKRK fusion proteins. The affinity pair RKRKRK-tagged GFP with A7C1 emerged as a promising solution (Ka of 2.45×105 M−1). The specificity of the ligand towards the tag was observed experimentally and theoretically through automated docking and molecular dynamics simulations.
Fernandes, CSM, Pina AS, Dias AMGC, Branco RJF, Roque ACA.
2014.
A theoretical and experimental approach toward the development of affinity adsorbents for GFP and GFP-fusion proteins purification. Journal of Biotechnology. 186:13-20.
AbstractThe green fluorescent protein (GFP) is widely employed to report on a variety of molecular phenomena, but its selective recovery is hampered by the lack of a low-cost and robust purification alternative. This work reports an integrated approach combining rational design and experimental validation toward the optimization of a small fully-synthetic ligand for GFP purification. A total of 56 affinity ligands based on a first-generation lead structure were rationally designed through molecular modeling protocols. The library of ligands was further synthesized by solid-phase combinatorial methods based on the Ugi reaction and screened against Escherichia coli extracts containing GFP. Ligands A4C2, A5C5 and A5C6 emerged as the new lead structures based on the high estimated theoretical affinity constants and the high GFP binding percentages and enrichment factors. The elution of GFP from these adsorbents was further characterized, where the best compromise between mild elution conditions, yield and purity was found for ligands A5C5 and A5C6. These were tested for purifying a model GFP-fusion protein, where ligand A5C5 yielded higher protein recovery and purity. The molecular interactions between the lead ligands and GFP were further assessed by molecular dynamics simulations, showing a wide range of potential hydrophobic and hydrogen-bond interactions.
Silva, MA, Valente RC, Pokkuluri PR, Turner DL, Salgueiro CA, Catarino T.
2014.
Thermodynamic and kinetic characterization of two methyl-accepting chemotaxis heme sensors from Geobacter sulfurreducens reveals the structural origin of their functional difference. Biochim Biophys Acta. 1837(6):920-928.
AbstractThe periplasmic sensor domains GSU582 and GSU935 are part of methyl-accepting chemotaxis proteins of the bacterium Geobacter sulfurreducens containing one c-type heme and a PAS-like fold. Their spectroscopic properties were shown previously to share similar spectral features. In both sensors, the heme group is in the high-spin form in the oxidized state and low-spin after reduction and binding of a methionine residue. Therefore, it was proposed that this redox-linked ligand switch might be related to the signal transduction mechanism. We now report the thermodynamic and kinetic characterization of the sensors GSU582 and GSU935 by visible spectroscopy and stopped-flow techniques, at several pH and ionic strength values. Despite their similar spectroscopic features, the midpoint reduction potentials and the rate constants for reduction by dithionite are considerably different in the two sensors. The reduction potentials of both sensors are negative and well framed within the typical anoxic subsurface environments in which Geobacter species predominate. The midpoint reduction potentials of sensor GSU935 are lower than those of GSU582 at all pH and ionic strength values and the same was observed for the reduction rate constants. The origin of the different functional properties of these closely related sensors is rationalized in the terms of the structures. The results suggest that the sensors are designed to function in different working potential ranges, allowing the bacteria to trigger an adequate cellular response in different anoxic subsurface environments. These findings provide an explanation for the co-existence of two similar methyl-accepting chemotaxis proteins in G. sulfurreducens.
Sampaio, JM, Madeira TI, Marques JP, Parente F, Costa AM, Indelicato P, Santos JP, Lépy M-C, Ménesguen Y.
2014.
Approaches for theoretical and experimental determinations of K-shell decay rates and fluorescence yields in Ge. Physical Review A. 89:012512., Number 1: APS
Abstractn/a
Moro, AJ, Pana A-M, Cseh L, Costisor O, Parola J, Cunha-Silva L, Puttreddy R, Rissanen K, Pina F.
2014.
Chemistry and Photochemistry of 2,6-Bis(2-hydroxybenzilidene)cyclohexanone. An Example of a Compound Following the Anthocyanins Network of Chemical Reactions. Journal of Physical Chemistry A. 118:6208-6215., Number 32
Abstractn/a
F. S. Silva, T, M. D. R. S. Martins L, Guedes da Silva FMC, Kuznetsov ML, Fernandes AR, Silva A, Pan C-J, Lee J-F, Hwang B-J, J. L. Pombeiro A.
2014.
Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: X-ray Absorption Spectroscopy Studies and Biological Applications. Chemistry – An Asian Journal. 9:1132–1143., Number 4: WILEY-VCH Verlag
Abstractn/a
Reimão-Pinto, {MM }, Cordeiro A, Almeida C, Pinheiro {AV }, Moro A, Lima {JC }, Baptista P.
2014.
Dual-color control of nucleotide polymerization sensed by a fluorescence actuator. Photochemical & Photobiological Sciences. 13:751–756., Number 5: Springer
AbstractSpatial and temporal control of molecular mechanisms can be achieved using photolabile bonds that connect biomolecules to protective caging groups, which can be cleaved upon irradiation of a specific wavelength, releasing the biomolecule ready-to-use. Here we apply and improve a previously reported strategy to tightly control in vitro transcription reactions. The strategy involves two caging molecules that block both ATP and GTP nucleotides. Additionally, we designed a molecular beacon complementary to the synthesized mRNA to infer its presence through a light signal. Upon release of both nucleotides through a specific monochromatic light (390 and 325 nm) we attain a light signal indicative of a successful in vitro transcription reaction. Similarly, in the absence of irradiation, no intense fluorescence signal was obtained. We believe this strategy could further be applied to DNA synthesis or the development of logic gates.
{Peixoto de Almeida}, M, Pereira E, Baptista P, Gomes I, Figueiredo S, Soares L, Franco R.
2014.
Gold Nanoparticles as (Bio)Chemical Sensors. Comprehensive Analytical Chemistry. 66:529–567.: Elsevier
AbstractThis chapter focuses on several sensing strategies and major recent advances in the use of gold nanoparticles in (bio)sensing of chemical and biological analytes. A brief introduction is presented on relevant properties of gold nanoparticles for sensing, the main types of (bio)chemical sensors, and the main detection techniques, followed by subsections according to sensing methodologies. These include colorimetric sensing and the biobarcode assay, fluorometric-based methods, electric and electrochemical sensing, and, last, more recent and advanced methodologies such as surface plasmon resonance and Raman-based sensors. In closing, relevance is given to advanced methods, featuring extremely high sensitivity and selectivity, down to single-molecule detection. Anisotropic gold nanoparticles have a special role in future developments.