Export 1532 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Aroso, IM, Craveiro R, Rocha A, Dionísio M, Barreiros S, Reis RL, Paiva A, Duarte ARC.  2015.  Design of controlled release systems for THEDES—Therapeutic deep eutectic solvents, using supercritical fluid technology. International Journal of Pharmaceutics. 492:73-79.Website
Pereira, CCL, Pereira LCJ, Leal JP, Laia CAT, Monteiro B.  2015.  Dy, Tb, Gd and Eu complexes with low melting point and magnetic behavior. Poyhedron. 91:42-46.
Palma, SI, Marciello M, Carvalho A, Veintemillas-Verdaguer S, Morales PM, Roque ACA.  2015.  Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. Journal of Colloid & Interface Science. 437(1):147–155. AbstractWebsite

Oleic acid coated iron oxide nanoparticles synthesized by thermal decomposition in organic medium are highly monodisperse but at the same time are unsuitable for biological applications. Ligand-exchange reactions are useful to make their surface hydrophilic. However, these could alter some structural and magnetic properties of the modified particles. Here we present a comprehensive study and comparison of the effects of employing either citric acid (CA) or meso-2,3-dimercaptosuccinic acid (DMSA) ligand-exchange protocols for phase transfer of monodisperse hydrophobic iron oxide nanoparticles produced by thermal decomposition of Fe(acac)3 in benzyl ether. We show the excellent hydrodynamic size distribution and colloidal stability of the hydrophilic particles obtained by the two protocols and confirm that there is a certain degree of oxidation caused by the ligand-exchange. CA revealed to be more aggressive towards the iron oxide surface than DMSA and greatly reduced the saturation magnetization values and initial susceptibility of the resulting particles compared to the native ones. Besides being milder and more straightforward to perform, the DMSA ligand exchange protocol produces MNP chemically more versatile for further functionalization possibilities. This versatility is shown through the covalent linkage of gum Arabic onto MNP-DMSA using carboxyl and thiol based chemical routes and yielding particles with comparable properties.

Poggi, F, Firmino A, Amado MP.  2015.  Energy supply-storage models for Rural Net-Zero Communities – An integrated approach. EMER 2015. :167-172., Madrid: ISBN-10: 1-62734-559-0; ISBN-13: 978-1-62734-559-0
Ito, Y, Tochio T, Fukushima S, Taborda A, Sampaio JM, Marques JP, Parente F, Indelicato P, Santos JP.  2015.  Experimental and theoretical determination of the Kα2/Kα1 intensity ratio for zinc. Journal of Quantitative Spectroscopy and Radiative Transfer. 151:295-299. AbstractWebsite

X-ray intensity ratios, such as the Kα2/Kα1 ratio, are parameters with a large application in atomic physics and related scientific and technological areas. D.

Franco, R, Pedrosa P, Carlos FF, Veigas B, Baptista PV.  2015.  Gold Nanoparticles for DNA/RNA based diagnostics. Handbook of Nanoparticles. :1339-1364., Zurich: Springer International Publishing Switzerland
Carvalho, F, Atilano ML, Pombinho R, Covas G, Gallo RL, Filipe SR, Sousa S, Cabanes D.  2015.  L-Rhamnosylation of Listeria monocytogenes wall teichoic acids promotes resistance to antimicrobial peptides by delaying interaction with the membrane. PLoS Pathogens. 11:e1004919.
Nojima, T, Gomes T, Grosso AR, Kimura H, Dye M J, Dhir S, Carmo-fonseca M, Proudfoot N J.  2015.  Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell. 161:526–540., Number 3 AbstractWebsite

Transcription is a highly dynamic process. Consequently, we have developed native elongating transcript sequencing technology for mammalian chromatin (mNET-seq), which generates single-nucleotide resolution, nascent transcription profiles. Nascent RNA was detected in the active site of RNA polymerase II (Pol II) along with associated RNA processing intermediates. In particular, we detected 5'splice site cleavage by the spliceosome, showing that cleaved upstream exon transcripts are associated with Pol II CTD phosphorylated on the serine 5 position (S5P), which is accumulated over downstream exons. Also, depletion of termination factors substantially reduces Pol II pausing at gene ends, leading to termination defects. Notably, termination factors play an additional promoter role by restricting non-productive RNA synthesis in a Pol II CTD S2P-specific manner. Our results suggest that CTD phosphorylation patterns established for yeast transcription are significantly different in mammals. Taken together, mNET-seq provides dynamic and detailed snapshots of the complex events underlying transcription in mammals.

Pina, AS, Dias AMGC, Ustok FI, Khoury GE, Fernandes CSM, Branco RJF, Lowe CR, Roque ACA.  2015.  Mild and cost-effective green fluorescent protein purification employing small synthetic ligands. Journal of Chromatography A. 1418:83-93. AbstractWebsite

Abstract The green fluorescent protein (GFP) is a useful indicator in a broad range of applications including cell biology, gene expression and biosensing. However, its full potential is hampered by the lack of a selective, mild and low-cost purification scheme. In order to address this demand, a novel adsorbent was developed as a generic platform for the purification of \{GFP\} or \{GFP\} fusion proteins, giving \{GFP\} a dual function as reporter and purification tag. After screening a solid-phase combinatorial library of small synthetic ligands based on the Ugi-reaction, the lead ligand (A4C7) selectively recovered \{GFP\} with 94% yield and 94% purity under mild conditions and directly from Escherichia coli extracts. Adsorbents containing the ligand \{A4C7\} maintained the selectivity to recover other proteins fused to GFP. The performance of \{A4C7\} adsorbents was compared with two commercially available methods (immunoprecipitation and hydrophobic interaction chromatography), confirming the new adsorbent as a low-cost viable alternative for \{GFP\} purification.

Poggi, F, Firmino A, Amado MP.  2015.  Moving Forward on Sustainable Energy Transitions: The Smart Rural. European Journal of Sustainable Development - DOI:10.14207/ejsd.2015.v4n2p43. 4(2):43-50.
Picado, A, Paixão SM, Moita L, Silva L, Diniz MS, Lourenço J, Peres I, Castro L, Correia JB, Pereira J, Ferreira I, Matos APA, Barquinha P, Mendonça E.  2015.  A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles. Front. Env. Sci. Eng.. 9(5):793–803. AbstractWebsite

The new properties of engineered nanoparticles drive the need for new knowledge on the safety, fate, behavior and biologic effects of these particles on organisms and ecosystems. Titanium dioxide nanoparticles have been used extensively for a wide range of applications, e.g, self-cleaning surface coatings, solar cells, water treatment agents, topical sunscreens. Within this scenario increased environmental exposure can be expected but data on the ecotoxicological evaluation of nanoparticles are still scarce. The main purpose of this work was the evaluation of effects of TiO2 nanoparticles in several organisms, covering different trophic levels, using a battery of aquatic assays. Using fish as a vertebrate model organism tissue histological and ultrastructural observations and the stress enzyme activity were also studied. TiO2 nanoparticles (Aeroxide® P25), two phase composition of anatase (65%) and rutile (35%) with an average particle size value of 27.6±11 nm were used. Results on the EC50 for the tested aquatic organisms showed toxicity for the bacteria, the algae and the crustacean, being the algae the most sensitive tested organism. The aquatic plant Lemna minor showed no effect on growth. The fish Carassius auratus showed no effect on a 21 day survival test, though at a biochemical level the cytosolic Glutathione-S-Transferase total activity, in intestines, showed a general significant decrease (p<0.05) after 14 days of exposure for all tested concentrations. The presence of TiO2 nanoparticles aggregates were observed in the intestine lumen but their internalization by intestine cells could not be confirmed.

A. C. Marques, L. Santos, M. N. Costa, J. M. Dantas, P. Duarte, A. Gonçalves, R. Martins, C. A. Salgueiro, Fortunato E.  2015.  Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Nature Publishing Group Scientific Reports. 5
Veigas, B, Pedrosa P, Carlos FF, Mancio-Silva L, Grosso AR, Fortunato E, Mota MM, Baptista PV.  2015.  One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care. Journal of Nanobiotechnology. 13:48., Number 1: BioMed Central AbstractWebsite

BACKGROUND:
Gold nanoparticles have been widely employed for biosensing purposes with remarkable efficacy for DNA detection. Amongst the proposed systems, colorimetric strategies based on the remarkable optical properties have provided for simple yet effective sequence discrimination with potential for molecular diagnostics at point of need. These systems may also been used for parallel detection of several targets to provide additional information on diagnostics of pathogens.
RESULTS:
For the first time, we demonstrate that a single Au-nanoprobe may provide for detection of two distinct targets (pathogens) allowing colorimetric multi-target detection. We demonstrate this concept by using one single gold-nanoprobe capable to detect members of the Mycobacterium tuberculosis complex and Plasmodium sp., the etiologic agents of tuberculosis and malaria, respectively. Following characterisation, the developed gold-nanoprobe allowed detection of either target in individual samples or in samples containing both DNA species with the same efficacy.
CONCLUSIONS:
Using one single probe via the non-cross-linking colorimetric methodology it is possible to identify multiple targets in one sample in one reaction. This proof-of-concept approach may easily be integrated into sensing platforms allowing for fast and simple multiplexing of Au-nanoprobe based detection at point-of-need.

Echeverria, C, Soares PIP, Robalo A, Pereira L, Novo C, Ferreira I, Borges JP.  2015.  One-pot synthesis of dual-stimuli responsive hybrid PNIPAAm-chitosan microgels. Materials & Design. 86:745-751. AbstractWebsite

The incorporation of magnetic nanoparticles into poly(N-isopropylacrylamide) (PNIPAAm) and chitosan microgels gives rise to hybrid systems that combine the microgels swelling capacity with the interesting features presented in magnetic nanoparticles. The presence of chitosan that act as surfactant for magnetic nanoparticles provides a simplistic approach which allows the encapsulation of magnetic nanoparticles without any previous surface modification. Spherical and highly monodisperse microgels with diameters in the range of 200 to 500 nm were obtained. The encapsulation of magnetic nanoparticles in the polymer matrix was confirmed by high resolution Scanning Electron Microscopy in transmission mode. Volume phase transition of the microgels was accessed by Dynamic Light Scattering measurements. It was observed that the thermosensitivity of the PNIPAM microgels still persists in the hybrid microgels; however, the swelling ability is compromised in the microgels with highest chitosan content. The heating performance of the hybrid magnetic microgels, when submitted to an alternating magnetic field, was also evaluated demonstrating the potential of these systems for hyperthermia treatments.

Echeverria, C, Soares P, Robalo A, Pereira L, Novo CMM, Ferreira I, Borges JP.  2015.  One-pot synthesis of dual-stimuli responsive hybrid PNIPAAm-chitosan microgels. Mater. Des. 86:745-751. AbstractWebsite

The incorporation of magnetic nanoparticles into poly(N-isopropylacrylamide) (PNIPAAm) and chitosan microgels gives rise to hybrid systems that combine the microgels swelling capacity with the interesting features presented in magnetic nanoparticles. The presence of chitosan that act as surfactant for magnetic nanoparticles provides a simplistic approach which allows the encapsulation of magnetic nanoparticles without any previous surface modification. Spherical and highly monodisperse microgels with diameters in the range of 200 to 500 nm were obtained. The encapsulation of magnetic nanoparticles in the polymer matrix was confirmed by high resolution Scanning Electron Microscopy in transmission mode. Volume phase transition of the microgels was accessed by Dynamic Light Scattering measurements. It was observed that the thermosensitivity of the PNIPAM microgels still persists in the hybrid microgels; however, the swelling ability is compromised in the microgels with highest chitosan content. The heating performance of the hybrid magnetic microgels, when submitted to an alternating magnetic field, was also evaluated demonstrating the potential of these systems for hyperthermia treatments.

Rodrigues, L. C., Mata, D., Pimentel, Nunes, D., Martins, Fortunato, Neves, Nuno, Monteiro, T., Costa FM.  2015.  One-step synthesis of ZnO decorated CNT buckypaper composites and their optical and electrical properties. Materials Science and Engineering: B. 195:38-44.
Amado, MP, Poggi F.  2015.  Planning PV power plants in sub-Saharan African countries. The case of Fogo Island – Cabo Verde. Materials and technologies for energy efficiency. (Antonio Méndez-Vilas, Ed.).:286., London, UK: BrownWalker Pres, ISBN-13: 978-1-62734-559-0
Restani, RB, Conde J, Pires RF, Martins P, Fernandes AR, Baptista PV, Bonifácio VDB, Aguiar-Ricardo A.  2015.  POxylated polyurea dendrimers: Smart core-shell vectors with IC50 lowering capacity. Macromol. Biosci.. AbstractWebsite

The design and preparation of highly efficient drug delivery platforms using green methodologies is at the forefront of nanotherapeutics research. POxylated polyurea dendrimers are efficiently synthesized using a supercritical-assisted polymerization in carbon dioxide. These fluorescent, pH-responsive and water-soluble core-shell smart nanocarriers show low toxicity in terms of cell viability and absence of glutathione depletion, two of the major side effect limitations of current vectors. The materials are also found to act as good transfection agents, through a mechanism involving an endosomal pathway, being able to reduce 100-fold the IC50 of paclitaxel.

Mano, F, Aroso I, Barreiros S, Borges JP, Reis R, Duarte AR, Paiva A.  2015.  Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry & Engineering. 3(10):2504–2509. AbstractWebsite

Functionalized electrospun fibers are of great interest for biomedical applications such as in the design of drug delivery systems. Nevertheless, in some cases the molecules of interest have poor solubility in water or have high melting temperatures. These drawbacks can be overcome using deep eutectic solvents. In this work, poly(vinyl alcohol) (PVA), a common biodegradable biopolymer, was used to produce new functionalized fibers with the eutectic mixture choline chloride:citric acid in a molar ratio of (1:1) ChCl:CA (1:1), which was used as a model system. Fibers were produced from an aqueous solution with 7.8% (w/v) and 9.8% (w/v) of 95% hydrolyzed PVA and a 2% (v/v) of ChCl:CA (1:1). Smooth, uniform fibers with an average diameter of 0.4 μm were obtained with a content of 19.8 wt % of ChCl:CA (1:1) encapsulated.

Johnston, EM, Dell'Acqua S, Pauleta SR, Moura I, Solomon EI.  2015.  Protonation state of the Cu4S2 CuZ site in nitrous oxide reductase: redox dependence and insight into reactivity. Chem Sci. 6:5670-5679.
Reed, P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, Pereira PM, Roemer T, Filipe SR, Pereira-Leal JB, Ligoxygakis P, Pinho MG.  2015.  Staphylococcus aureus survives with a minimal peptidoglycan synthesis machinery but sacrifices virulence and antibiotic resistance. PLoS Pathogens. 11:e1004891.
Dantas, JM, Campelo LM, Duke NEC, Salgueiro CA, Pokkuluri PR.  2015.  The structure of PccH from Geobacter sulfurreducens: a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode. FEBS J. 282(11):2215-2231. AbstractWebsite

The structure of cytochrome c (GSU3274) designated as PccH from Geobacter sulfurreducens was determined at a resolution of 2.0 Å. PccH is a small (15 kDa) cytochrome containing one c-type heme, found to be essential for the growth of G. sulfurreducens with respect to accepting electrons from graphite electrodes poised at -300 mV versus standard hydrogen electrode. with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH has a low reduction potential of -24 mV at pH 7, which is unusual for monoheme cytochromes. Based on difference in structure, together with sequence phylogenetic analysis, we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by G. sulfurreducens. Because PccH is predicted to be located in the periplasm of this bacterium, it could not be involved in the first step of accepting electrons from the electrode but is very likely involved in the downstream electron transport events in the periplasm.

Silva, JA, Vale TM, Dias RJ, Paulino H, Lourenço JM.  2015.  Supporting Multiple Data Replication Models in Distributed Transactional Memory. Proceedings of the 2015 International Conference on Distributed Computing and Networking. , Goa, India: ACM Abstract2015-icdcn.pdf

n/a

Soares, PIP, Lochte F, Echeverria C, Pereira L, Coutinho J, Ferreira I, Novo C, Borges JP.  2015.  Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology. 26(42):425704. AbstractWebsite

Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41–45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles' average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.