Export 1532 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Branquinho, R, Salgueiro D, Santa A, Kiazadeh A, Barquinha P, Pereira L, Martins R, Fortunato E.  2015.  {Towards environmental friendly solution-based ZTO/AlOx TFTs}. SEMICONDUCTOR SCIENCE AND TECHNOLOGY. 30, Number 2, SI Abstract
n/a
2014
Santos, JP, Martins MC, Costa AM, Marques JP, Indelicato P, Parente F.  2014.  Theoretical determination of K X-ray transition energy and probability values for highly charged ions of lanthanum and cerium, Sep 11. The European Physical Journal D. 68:244., Number 9 AbstractWebsite
n/a
Pina, L, Veiga L, Hicks M.  2014.  Rubah: DSU for Java on a stock JVM, sep. ACM Conference on Object-Oriented Programming Languages, Systems, and Applications (OOPSLA 2014). : ACM Abstract2014-oopsla-pina-core-a.pdf

n/a

Pedrosa, P, Veigas B, Machado D, Couto I, Viveiros M, Baptista {PV}.  2014.  Gold nanoprobes for multi loci assessment of multi-drug resistant tuberculosis, may. Tuberculosis. 94:332–337., Number 3: Churchill Livingstone Abstract

Tuberculosis, still one of the leading human infectious diseases, reported 8.7 million new cases in 2011 alone. Also, the increasing rate of multidrug-resistant tuberculosis (MDRTB) and its treatment difficulties pose a serious public health threat especially in developing countries. Resistance to isoniazid and rifampicin, first line antibiotics, is commonly associated with point mutations in katG, inhA and rpoB genes of Mycobacterium tuberculosis complex (MTBC). Therefore, the development of cheap, fast and simple molecular methods to assess susceptibility profiles would have a huge impact in the capacity of early diagnosis and treatment of MDRTB. Gold nanoparticles functionalized with thiol-modified oligonucleotides (Au-nanoprobes) have shown the potential to provide a rapid and sensitive detection method for MTBC and single base mutations associated with antibiotic resistance, namely the characterization of the three most relevant codons in rpoB gene associated to rifampicin resistance. Here we extend the Au-nanoprobe approach towards discriminating specific mutations within inhA and rpoB genes in PCR amplified DNA from isolates. Using a multiplex PCR reaction for these two genes, it is possible to assess both loci in parallel, and extend the potential of the Au-nanoprobe method to MDRTB molecular characterization with special application in the most frequent Portuguese genotypes. (C) 2014 Elsevier Ltd. All rights reserved.

Gaspar, D, Fernandes SN, dea Oliveira G, Fernandes JG, Grey P, Pontes RV, Pereira L, Martins R, Godinho MH, Fortunato E.  2014.  {Nanocrystalline cellulose applied simultaneously as the gate dielectric and\~{}the substrate in flexible field effect transistors.}, mar. Nanotechnology. 25:94008., Number 9 AbstractWebsite

Cotton-based nanocrystalline cellulose (NCC), also known as nanopaper, one of the major sources of renewable materials, is a promising substrate and component for producing low cost fully recyclable flexible paper electronic devices and systems due to its properties (lightweight, stiffness, non-toxicity, transparency, low thermal expansion, gas impermeability and improved mechanical properties).Here, we have demonstrated for the first time a thin transparent nanopaper-based field effect transistor (FET) where NCC is simultaneously used as the substrate and as the gate dielectric layer in an \{$\backslash$textquoteright\}interstrate\{$\backslash$textquoteright\} structure, since the device is built on both sides of the NCC films; while the active channel layer is based on oxide amorphous semiconductors, the gate electrode is based on a transparent conductive oxide.Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (>7\~{}cm(2)\~{}V (-1)\~{}s(-1)), drain-source current on/off modulation ratio higher than 10(5), enhancement n-type operation and subthreshold gate voltage swing of 2.11\~{}V/decade. The NCC film FET characteristics have been measured in air ambient conditions and present good stability, after two weeks of being processed, without any type of encapsulation or passivation layer. The results obtained are comparable to ones produced for conventional cellulose paper, marking this out as a promising approach for attaining high-performance disposable electronics such as paper displays, smart labels, smart packaging, RFID (radio-frequency identification) and point-of-care systems for self-analysis in bioscience applications, among others.

Pereira, L, Gaspar D, Guerin D, a Delattre, Fortunato E, Martins R.  2014.  {The influence of fibril composition and dimension on the performance of paper gated oxide transistors.}, mar. Nanotechnology. 25:094007., Number 9 AbstractWebsite

Paper electronics is a topic of great interest due the possibility of having low-cost, disposable and recyclable electronic devices. The final goal is to make paper itself an active part of such devices. In this work we present new approaches in the selection of tailored paper, aiming to use it simultaneously as substrate and dielectric in oxide based paper field effect transistors (FETs). From the work performed, it was observed that the gate leakage current in paper FETs can be reduced using a dense microfiber/nanofiber cellulose paper as the dielectric. Also, the stability of these devices against changes in relative humidity is improved. On other hand, if the pH of the microfiber/nanofiber cellulose pulp is modified by the addition of HCl, the saturation mobility of the devices increases up to 16 cm(2) V(-1) s(-1), with an ION/IOFF ratio close to 10(5).

Morawiec, S, Mendes MJ, Filonovich SA, Mateus T, Mirabella S, Águas H, Ferreira I, Simone F, Fortunato E, Martins R, Priolo F, Crupi I.  2014.  Photocurrent enhancement in thin a-Si: H solar cells via plasmonic light trapping, 8-13 Jun. CLEO: Science and Innovations. : Optical Society of America Abstract

Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the self-assembled silver nanoparticles incorporated in the cells’ back reflector.

Amado, MP, Pinho F, Faria P, Ramalhete I.  2014.  Eco-wall modular solutions for buildings, 7,8,9 July. 9th International Masonry Conference. , Guimarães - ISBN: 978-972-8692-87-2: ICM
Pires de Matos, A, Wiley R, Troeira M, Queiroz C, Ruivo A, Paulino N, Laia C.  2014.  Venetian Glass in Contemporary Art, 27Feb -1Mar 2013. Study Days on Venetian Glass: Approximately 1600's. Volume: ATTI - Classe di Scienze Fisiche, Matematiche e Naturali. , Venice, Italy: Instituto Veneto di Scienze, Lettere ed Arti: 177-181
Poggi, F, Amado MP.  2014.  Conceito de região funcional no contexto energético do território - espaço de cooperação rural - urbano, 24,25,26 Sept . PLURIS 2014. , Lisboa: FCG, Lisboa
F. S. Silva, T, M. D. R. S. Martins L, Guedes da Silva FMC, Kuznetsov ML, Fernandes AR, Silva A, Pan C-J, Lee J-F, Hwang B-J, J. L. Pombeiro A.  2014.  Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: X-ray Absorption Spectroscopy Studies and Biological Applications, 2014/04/01. Chemistry – An Asian Journal. 9(4):1132-1143.: WILEY-VCH Verlag AbstractWebsite
n/a
Silva, JA, Lourenço JM, Paulino H.  2014.  Boosting Locality in Multi-version Partial Data Replication, 2014. : Universidade Nova de Lisboa2014-silva.pdf
Pina, AS, Batalha IL, Roque ACA.  2014.  Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. Protein Downstream Processing: Design, Development and Application of High and Low-Resolution Methods. (Labrou, Nikolaos, Ed.).:147-168.: Springer Abstract

The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.

Gaspar, D, Pimentel AC, Mendes MJ, Mateus T, Falcão BP, Leitão JP, Soares J, Araújo A, Vicente A, Filonovich SA, Águas H, Martins R, Ferreira I.  2014.  Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films. Plasmonics. 9(5):1015–1023. AbstractWebsite

Silver (Ag) and tin (Sn) nanoparticles (NPs) were deposited by thermal evaporation onto heated glass substrates with a good control of size, shape and surface coverage. This process has the advantage of allowing the fabrication of thin-film solar cells with incorporated NPs without vacuum break, since it does not require chemical processes or post-deposition annealing. The X-ray diffraction, TEM and SEM properties are correlated with optical measurements and amorphous silicon hydrogenated (a-Si:H) films deposited on top of both types of NPs show enhanced absorbance in the near-infrared. The results are interpreted with electromagnetic modelling performed with Mie theory. A broad emission in the near-infrared region is considerably increased after covering the Ag nanoparticles with an a-Si:H layer. Such effect may be of interest for possible down-conversion mechanisms in novel photovoltaic devices.

Atilano, ML, Pereira PM, Vaz F, Catalão MJ, Reed P, Grilo IR, Sobral RG, Ligoxygakis P, Pinho MG, Filipe SR.  2014.  Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system. eLife. 3:e02277.
Morawiec, S, Mendes MJ, Filonovich SA, Mateus T, Mirabella S, Águas H, Ferreira I, Simone F, Fortunato E, Martins R, Priolo F, Crupi I.  2014.  Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. Opt. Express. 22(104):A1059-A1070. AbstractWebsite

Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells’ rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 – 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices.

Pina, AS, Lowe CR, Roque ACA.  2014.  Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnology Advances. 32(2):366-381. AbstractWebsite

The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs “tag-ligand” combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established “tag-ligand” systems available for fusion protein purification and also explores current unconventional strategies under development.

Silva, J, Rodrigues AS, Videira PA, Lasri J, Charmier AJ, Pombeiro AJL, Fernandes AR.  2014.  Characterization of the antiproliferative potential and biological targets of a trans ketoimine platinum complex. Inorg Chim Acta. 423:156-167.
Silva, TF, Martins LM, Guedes da Silva MF, Kuznetsov ML, Fernandes AR, Silva A, Pan CJ, Lee JF, Hwang BJ, Pombeiro AJ.  2014.  Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications. Chem Asian J. 9(4):1132-43.14silvacaj.pdf
Simone, Zanarini, Garino, Nadia, Nair, JIJEESH RAVI, Francia, Carlotta, Wojcik PJ, Luis, Elvira, Rodrigo, Martins, Bodoardo, Silvia, Penazzi N.  2014.  Contrast Enhancement in Polymeric Electrochromic Devices Encompassing Room Temperature Ionic Liquids. International Journal of ELECTROCHEMICAL SCIENCE. 9:1650-1662.
Madariaga, D, Martínez-Sáez N, Somovilla VJ, Coelho H, González JV, Castro-López J, Asensio JL, Jimenez-Barbero J, Busto JH, Avenoza A, Marcelo F, Hurtado-Guerrero R, Corzana F, Peregrina JM.  2014.  Detection of Tumor-Associated Glycopeptides by Lectins: the Peptide Context Modulates Carbohydrate Recognition. ACS Chem. Biol.. 10:747-56. Abstract

Tn antigen (α-O-GalNAc-Ser/Thr) is a convenient cancer biomarker that is recognized by antibodies and lectins. This work yields remarkable results for two plant lectins in terms of epitope recognition and reveals that these receptors show higher affinity for Tn antigen when it is incorporated in the Pro-Asp-Thr-Arg (PDTR) peptide region of mucin MUC1. In contrast, a significant affinity loss is observed when Tn antigen is located in the Ala-His-Gly-Val-Thr-Ser-Ala (AHGVTSA) or Ala-Pro-Gly-Ser-Thr-Ala-Pro (APGSTAP) fragments. Our data indicate that the charged residues, Arg and Asp, present in the PDTR sequence establish noteworthy fundamental interactions with the lectin surface as well as fix the conformation of the peptide backbone, favoring the presentation of the sugar moiety toward the lectin. These results may help to better understand glycopeptide-lectin interactions and may contribute to engineer new binding sites, allowing novel glycosensors for Tn antigen detection to be designed

Johnston, EM, Dell'Acqua S, Ramos S, Pauleta SR, Moura I, Solomon EI.  2014.  Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase. J Am Chem Soc. 136:614–617.
Mahmudov, KT, da Silva MFCG, Kopylovich MN, Fernandes AR, Silva A, Mizar A, Pombeiro AJL.  2014.  Di- and tri-organotin(IV) complexes of arylhydrazones of methylene active compounds and their antiproliferative activity. J Organomet Chem. 760:67-73.14mahmudovjoc.pdf
Morgado, L, Lourenço S, Londer YY, Schiffer M, Pokkuluri PR, Salgueiro CA.  2014.  Dissecting the functional role of key residues in triheme cytochrome PpcA: a path to rational design of G. sulfurreducens strains with enhanced electron transfer capabilities. PLoS One. 9(8):e105566. AbstractWebsite

PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e-/H(+) energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e-/H(+) transfer pathways. The results showed that the preferred e-/H(+) transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e-/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.

Rueff, A-S, Chastanet A, Dominguez-Escobar J, Yao Z, Yates J, Prejean M-V, Delumeau O, P. Noirot, Wedlich-Soldner R, Filipe SR, Carballido-Lopez R.  2014.  An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis. Mol. Microbiol. 91:348-362.