Export 2155 results:
Sort by: Author Title Type [ Year  (Desc)]
1992
Barata, BA, Liang J, Moura I, Legall J, Moura JJ, Huynh BH.  1992.  Mossbauer study of the native, reduced and substrate-reacted Desulfovibrio gigas aldehyde oxido-reductase, Mar 1. Eur J Biochem. 204:773-8., Number 2 AbstractWebsite

The Desulfovibrio gigas aldehyde-oxido-reductase contains molybdenum and iron-sulfur clusters. Mossbauer spectroscopy was used to characterize the iron-sulfur clusters. Spectra of the enzyme in its oxidized, partially reduced and benzaldehyde-reacted states were recorded at different temperatures and applied magnetic fields. All the iron atoms in D. gigas aldehyde oxido-reductase are organized as [2Fe-2S] clusters. In the oxidized enzyme, the clusters are diamagnetic and exhibit a single quadrupole doublet with parameters (delta EQ = 0.62 +/- 0.02 mm/s and delta = 0.27 +/- 0.01 mm/s) typical for the [2Fe-2S]2+ state. Mossbauer spectra of the reduced clusters also show the characteristics of a [2Fe-2S]1+ cluster and can be explained by a spin-coupling model proposed for the [2Fe-2S] cluster where a high-spin ferrous ion (S = 2) is antiferromagnetically coupled to a high-spin ferric ion (S = 5/2) to form a S = 1/2 system. Two ferrous sites with different delta EQ values (3.42 mm/s and 2.93 mm/s at 85 K) are observed for the reduced enzyme, indicating the presence of two types of [2Fe-2S] clusters in the D. gigas enzyme. Taking this observation together with the re-evaluated value of iron content (3.5 +/- 0.1 Fe/molecule), it is concluded that, similar to other Mo-hydroxylases, the D. gigas aldehyde oxido-reductase also contains two spectroscopically distinguishable [2Fe-2S] clusters.

Wang, CP, Franco R, Moura JJ, Moura I, Day EP.  1992.  The nickel site in active Desulfovibrio baculatus [NiFeSe] hydrogenase is diamagnetic. Multifield saturation magnetization measurement of the spin state of Ni(II), Apr 15. J Biol Chem. 267:7378-80., Number 11 AbstractWebsite

The magnetic properties of the nickel(II) site in active Desulfovibrio baculatus (DSM 1743) [NiFeSe] hydrogenase have been measured using the multifield saturation magnetization technique. The periplasmic [NiFeSe] hydrogenase was isolated from bacteria grown in excess selenium in the presence of 57Fe. Saturation magnetization data were collected at three fixed fields (1.375, 2.75, 5.5 tesla) over the temperature range from 2 to 100 K. Mossbauer and EPR spectroscopies were used to characterize the magnetic state of the two [4Fe-4S] clusters of the enzyme and to quantitate the small amounts of iron impurities present in the sample. The nickel(II) site was found to be diamagnetic (low spin, S = 0). In combination with recent results from extended x-ray absorption fine structure studies, this magnetic state indicates that the nickel(II) site of active D. baculatus [NiFeSe] hydrogenase is five-coordinate.

Pina, F, Parola AJ, Bencini A, Micheloni M, Manfrin MF, Moggi L.  1992.  CHARGE EFFECTS ON THE PHOTOCHEMISTRY OF THE CO(EDTA) .1. SYSTEM IN THE PRESENCE OF POLYAMMONIUM MACROCYCLIC RECEPTORS, 1992. Inorganica Chimica Acta. 195:139-143. AbstractWebsite

The effects of polyammonium macrocycles on the spectroscopic and photochemical properties of the Co(EDTA)- . I- ion-pair have been investigated. The addition of a macrocycle to aqueous solutions containing Co(EDTA)- and I- causes an increase of the absorbance in the region of the ion-pair charge-transfer band, as well as an increase of the quantum yield for the intramolecular photooxidation reduction of the ion-pair. Both these effects are mainly, if not only, due to an increase of the association constant between Co(EDTA)- and I-, caused by the positive charge of the macrocycle bound to the complex. On the contrary no change was observed on the intrinsic photoreactivity of the excited ion-pair. This last result is discussed in comparison with the effects already observed on the ligand photodissociation of MC excited states of Co(III) cyanide complexes.

Romao, MJ, Turk D, GomisRuth FX, Huber R, Schumacher G, Mollering H, Russmann L.  1992.  CRYSTAL-STRUCTURE ANALYSIS, REFINEMENT AND ENZYMATIC-REACTION MECHANISM OF N-CARBAMOYLSARCOSINE AMIDOHYDROLASE FROM ARTHROBACTER SP AT 2.0-ANGSTROM RESOLUTION. Journal of Molecular Biology. 226:1111-1130., Number 4 AbstractWebsite
n/a
Moura, I, Tavares P, Moura JJG, Ravi N, Huynh BH, Liu MY, Legall J.  1992.  DIRECT SPECTROSCOPIC EVIDENCE FOR THE PRESENCE OF A 6FE CLUSTER IN AN IRON-SULFUR PROTEIN ISOLATED FROM DESULFOVIBRIO-DESULFURICANS (ATCC-27774). Journal Of Biological Chemistry. {267}:{4489-4496}., Number {7} Abstract

A novel iron-sulfur protein was purified from the extract of Desulfovibrio desulfuricans (ATCC 27774) to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a monomer of 57 kDa molecular mass. It contains comparable amounts of iron and inorganic labile sulfur atoms and exhibits an optical spectrum typical of iron-sulfur proteins with maxima at 400, 305, and 280 nm. Mossbauer data of the as-isolated protein show two spectral components, a paramagnetic and a diamagnetic, of equal intensity. Detailed analysis of the paramagnetic component reveals six distinct antiferromagnetically coupled iron sites, providing direct spectroscopic evidence for the presence of a 6Fe cluster in this newly purified protein. One of the iron sites exhibits parameters (DELTA-E(Q) = 2.67 +/- 0.03 mm/s and delta = 1.09 +/- 0.02 mm/s at 140 K) typical for high spin ferrous ion; the observed large isomer shift indicates an iron environment that is distinct from the tetrahedral sulfur coordination commonly observed for the iron atoms in iron-sulfur clusters and is consistent with a penta- or hexacoordination containing N and/or O ligands. The other five iron sites are most probably high spin ferric. Three of them show parameters characteristic for tetrahedral sulfur coordination. In correlation with the EPR spectrum of the as-purified protein which shows a resonance signal at g = 15.3 and a group of signals between g = 9.8 and 5.4, this 6Fe cluster is assigned to an unusual spin state of 9/2 with zero field splitting parameters D = -1.3 cm-1 and E/D = 0.062. Other EPR signals attributable to minor impurities are also observed at the g = 4.3 and 2.0 regions. The diamagnetic Mossbauer component represents a second iron cluster, which, upon reduction with dithionite, displays an intense S = 1/2 EPR signal with g values at 2.00, 1.83, and 1.31. In addition, an EPR signal of the S = 3/2 type is also observed for the dithionite-reduced protein.

Saraiva, LM, Denariaz G, Liu M-Y, Payne WJ, Legall J, Moura I.  1992.  NMR and EPR studies on a monoheme cytochrome c550 isolated from Bacillus halodenitrificans. European Journal of Biochemistry. 204:1131-1139., Number 3: Blackwell Publishing Ltd AbstractWebsite

A c-type monoheme ferricytochrome c550 (9.6 kDa) was isolated from cells of Bacillus halodenitrificans sp.nov., grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme–methionine coordination. The mid-point redox potential was determined at several pH values by visible spectroscopy. The redox potential at pH 7.6 is 138 mV. When studied by 1H-NMR spectroscopy as a function of pH, the spectrum shows a pH dependence with pKa values of 6.0 and 11.0. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c550. The first pKa is probably associated with protonation of the propionate groups. The second pKa value introduces a larger effect in the 1H-NMR spectrum and is probably due to the ionisation of the axial histidine. Studies of temperature variation of the 1H-NMR spectra for both the ferrous and ferri forms of the cytochrome were performed. Heme meso protons, the heme methyl groups, the thioether protons, two protons from a propionate and the methylene protons from the axial methionine were identified in the reduced form. The heme methyl resonances of the ferri form were also assigned. EPR spectroscopy was also used to probe the ferric heme environment. A signal at gmax∼ 3.5 at pH 7.5 was observed indicating an almost axial heme environment. At higher pH values the signal at gmax∼ 3.5 converts mainly to a signal at g∼ 2.96. The pKa associated with this change is around 11.3. The N-terminal sequence of this cytochrome was determined and compared with known amino acid sequences of other cytochromes.

Burrows, HD, Cardoso AC, Formosinho SJ, Gil AMPC, da Miguel MGM, Barata B, J.G. Moura J.  1992.  The photochemical reaction between uranyl nitrate and azulene. Journal of Photochemistry and Photobiology A: Chemistry. 68:279-287., Number 3 AbstractWebsite
n/a
Melo, MJ, Pina F, Macanita AL, Melo EC, Herrmann C, Forster R, Koch H, Wamhoff H.  1992.  PHOTOCHEMISTRY OF 2-(2-FURYL)-BENZIMIDAZOLE (FUBERIDAZOLE). Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences. 47:1431-1437., Number 10 AbstractWebsite
n/a
1991
Lampreia, J, Fauque G, Speich N, Dahl C, Moura I, Truper HG, Moura JJ.  1991.  Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeglobus fulgidus, Nov 27. Biochem Biophys Res Commun. 181:342-7., Number 1 AbstractWebsite

Adenylyl sulfate (APS) reductase, the key enzyme of the dissimilatory sulfate respiration, catalyzes the reduction of APS (the activated form of sulfate) to sulfite with release of AMP. A spectroscopic study was carried out with the APS reductase purified from the extremely thermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus DSM 4304. Combined ultraviolet/visible spectroscopy and low temperature electron paramagnetic resonance (EPR) studies were used in order to characterize the active centers and the reactivity towards AMP and sulfite of this enzyme. The A. fulgidus APS reductase is an iron-sulfur flavoprotein containing two distinct [4Fe-4S] clusters (Centers I and II) very similar to the homologous enzyme from Desulfovibrio gigas. Center I, which has a high redox potential, is reduced by AMP and sulfite, and Center II has a very negative redox potential.

Moura, I, Teixeira M, Legall J, Moura JJ.  1991.  Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin, Nov. J Inorg Biochem. 44:127-39., Number 2 AbstractWebsite

The single iron site of rubredoxin was replaced by nickel and cobalt. The near-infrared/visible/UV spectra of these metal derivatives show ligand-field transitions and charge-transfer bands which closely resemble those of simple tetrathiolate complexes, indicating a tetrahedral arrangement of the sulfur cysteinyl ligands around the metal core. The 1H NMR spectra of the nickel and cobalt derivatives reveal extremely low-field contact shifted resonances of one proton intensity assigned to beta-CH2 and alpha-CH cysteinyl protons. Other well resolved resonances shifted out of the main protein spectral envelope are also observed and probably arise from contact plus pseudocontact shift mechanisms. Rubredoxins from different sulfate reducers were metal substituted and assignments of aliphatic protons are tentatively proposed, taking advantage of the amino acid sequence homologies. The present data is promising in terms of structural analysis of the coordination sphere of the metal core. It was also shown that replacement of the iron atom of desulforedoxin, a close analogue of rubredoxin, by cobalt and nickel was possible.

Moura, JJ, Costa C, Liu MY, Moura I, Legall J.  1991.  Structural and functional approach toward a classification of the complex cytochrome c system found in sulfate-reducing bacteria, May 23. Biochim Biophys Acta. 1058:61-6., Number 1 AbstractWebsite

Following the discovery of the tetraheme cytochrome c3 in the strict anaerobic sulfate-reducing bacteria (Postgate, J.R. (1954) Biochem. J. 59, xi; Ishimoto et al. (1954) Bull. Chem. Soc. Japan 27, 564-565), a variety of c-type cytochromes (and others) have been reported, indicating that the array of heme proteins in these bacteria is complex. We are proposing here a tentative classification of sulfate- (and sulfur-) reducing bacteria cytochromes c based on: number of hemes per monomer, heme axial ligation, heme spin state and primary structures (whole or fragmentary). Different and complementary spectroscopic tools have been used to reveal the structural features of the heme sites.

Moreno, C, Campos A, Teixeira M, Legall J, Montenegro MI, Moura I, Van Dijk C, Moura JG.  1991.  Simulation of the electrochemical behavior of multi-redox systems. Current potential studies on multiheme cytochromes, Dec 5. Eur J Biochem. 202:385-93., Number 2 AbstractWebsite

The direct unmediated electrochemical response of the tetrahemic cytochrome c3 isolated from sulfate reducers Desulfovibrio baculatus (DSM 1743) and D. vulgaris (strain Hildenborough), was evaluated using different electrode systems [graphite (edge cut), gold, semiconductor (InO2) and mercury)] and different electrochemical methods (cyclic voltammetry and differential pulse voltammetry). A computer program was developed for the theoretical simulation of a complete cyclic voltammetry curve, based on the method proposed by Nicholson and Shain [Nicholson, R.S. & Shain, I. (1964) Anal. Chem. 36, 706-723], using the Gauss-Legendre method for calculation of the integral equations. The experimental data obtained for this multi-redox center protein was deconvoluted in to the four redox components using theoretically generated cyclic voltammetry curves and the four mid-point reduction potentials determined. The pH dependence of the four reduction potentials was evaluated using the deconvolution method described.

Bray, RC, Turner NA, Legall J, Barata BA, Moura JJ.  1991.  Information from e.p.r. spectroscopy on the iron-sulphur centres of the iron-molybdenum protein (aldehyde oxidoreductase) of Desulfovibrio gigas, Dec 15. Biochem J. 280 ( Pt 3):817-20. AbstractWebsite

E.p.r. spectra of reduced iron-sulphur centres of the aldehyde oxidoreductase (iron-molybdenum protein) of Desulfovibrio gigas were recorded at X-band and Q-band frequencies and simulated. Results are consistent with the view that only two types of [2Fe-2S] clusters are present, as in eukaryotic molybdenum-containing hydroxylases. The data indicate the Fe/SI centre to be very similar, and the Fe/SII centre somewhat similar, to these centres in the eukaryotic enzymes.

Ferreira, LM, Lobo AM, Prabhakar S, MARCELOCURTO MJ, Rzepa HS, YI MY.  1991.  2-ACYL THIAZOLIUM SALTS AS SELECTIVE AGENTS FOR THE O-ACYLATION OF AROMATIC HYDROXYLAMINES, AUG 15. JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS. :1127-1128., Number 16 Abstract
n/a
Lai, KK, Moura I, Liu MY, Legall J, To Yue K.  1991.  Direct evidence of the metal-free nature of sirohydrochlorin in desulfoviridin. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1060:25-27., Number 1 AbstractWebsite
n/a
1990
Lampreia, J, Moura I, Teixeira M, Peck, H. D. J, Legall J, Huynh BH, Moura JJ.  1990.  The active centers of adenylylsulfate reductase from Desulfovibrio gigas. Characterization and spectroscopic studies, Mar 30. Eur J Biochem. 188:653-64., Number 3 AbstractWebsite

In order to utilize sulfate as the terminal electron acceptor, sulfate-reducing bacteria are equipped with a complex enzymatic system in which adenylylsulfate (AdoPSO4) reductase plays one of the major roles, reducing AdoPSO4 (the activated form of sulfate) to sulfite, with release of AMP. The enzyme has been purified to homogeneity from the anaerobic sulfate reducer Desulfovibrio gigas. The protein is composed of two non-identical subunits (70 kDa and 23 kDa) and is isolated in a multimeric form (approximately 400 kDa). It is an iron-sulfur, flavin-containing protein, with one FAD moiety, eight iron atoms and a minimum molecular mass of 93 kDa. Low-temperature EPR studies were performed to characterize its redox centers. In the native state, the enzyme showed an almost isotropic signal centered at g = 2.02 and only detectable below 20 K. This signal represented a minor species (0.10-0.25 spins/mol) and showed line broadening in the enzyme isolated from 57Fe-grown cells. Addition of sulfite had a minor effect on the EPR spectrum, but caused a major decrease in the visible region of the optical spectrum (around 392 nm). Further addition of AMP induced only a minor change in the visible spectrum whereas major changes were seen in the EPR spectrum; the appearance of a rhombic signal at g values 2.096, 1.940 and 1.890 (reduced Fe-S center I) observable below 30 K and a concomitant decrease in intensity of the g = 2.02 signal were detected. Effects of chemical reductants (ascorbate, H2/hydrogenase-reduced methyl viologen and dithionite) were also studied. A short time reduction with dithionite (15 s) or reduction with methyl viologen gave rise to the full reduction of center I (with slightly modified g values at 2.079, 1.939 and 1.897), and the complete disappearance of the g = 2.02 signal. Further reduction with dithionite produces a very complex EPR spectrum of a spin-spin-coupled nature (observable below 20 K), indicating the presence of at least two iron-sulfur centers, (centers I and II). Mossbauer studies on 57Fe-enriched D. gigas AdoPSO4 reductase demonstrated unambiguously the presence of two 4Fe clusters. Center II has a redox potential less than or equal to 400 mV and exhibits spectroscopic properties that are characteristic of a ferredoxin-type [4Fe-4S] cluster. Center I exhibits spectra with atypical Mossbauer parameters in its reduced state and has a midpoint potential around 0 mV, which is distinct from that of a ferredoxin-type [4Fe-4S] cluster, suggesting a different structure and/or a distinct cluster-ligand environment.

Moura, I, Tavares P, Moura JJ, Ravi N, Huynh BH, Liu MY, Legall J.  1990.  Purification and characterization of desulfoferrodoxin. A novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center, Dec 15. J Biol Chem. 265:21596-602., Number 35 AbstractWebsite

A new type of non-heme iron protein was purified to homogeneity from extracts of Desulfovibrio desulfuricans (ATCC 27774) and Desulfovibrio vulgaris (strain Hildenborough). This protein is a monomer of 16-kDa containing two iron atoms per molecule. The visible spectrum has maxima at 495, 368, and 279 nm and the EPR spectrum of the native form shows resonances at g = 7.7, 5.7, 4.1 and 1.8 characteristic of a high-spin ferric ion (S = 5/2) with E/D = 0.08. Mossbauer data indicates the presence of two types of iron: an FeS4 site very similar to that found in desulforedoxin from Desulfovibrio gigas and an octahedral coordinated high-spin ferrous site most probably with nitrogen/oxygen-containing ligands. Due to this rather unusual combination of active centers, this novel protein is named desulfoferrodoxin. Based on NH2-terminal amino acid sequence determined so far, the desulfoferrodoxin isolated from D. desulfuricans (ATCC 27774) appears to be a close analogue to a recently discovered gene product from D. vulgaris (Brumlik, M.J., and Voordouw, G. (1989) J. Bacteriol. 171, 49996-50004), which was suggested to be a rubredoxin oxidoreductase. However, reduced pyridine nucleotides failed to reduce the desulforedoxin-like center of this new protein.

Costa, C, Macedo A, Moura I, Moura JJ, Legall J, Berlier Y, Liu MY, Payne WJ.  1990.  Regulation of the hexaheme nitrite/nitric oxide reductase of Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli. A mass spectrometric study, Dec 10. FEBS Lett. 276:67-70., Number 1-2 AbstractWebsite

Dissimilatory nitrite reduction, carried out by hexaheme proteins, gives ammonia as the final product. Representatives of this enzyme group from 3 bacterial species can also reduce NO to either ammonia or N2O. The redox regulation of the nitrite/nitric oxide activities is discussed in the context of the denitrifying pathway.

Costa, C, Moura JJ, Moura I, Liu MY, Peck, H. D. J, Legall J, Wang YN, Huynh BH.  1990.  Hexaheme nitrite reductase from Desulfovibrio desulfuricans. Mossbauer and EPR characterization of the heme groups, Aug 25. J Biol Chem. 265:14382-8., Number 24 AbstractWebsite

Mossbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. Mossbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the Mossbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.

Fauque, G, Lino AR, Czechowski M, Kang L, Dervartanian DV, Moura JJ, Legall J, Moura I.  1990.  Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands, Aug 1. Biochim Biophys Acta. 1040:112-8., Number 1 AbstractWebsite

A dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).

Teixeira, M, Moura I, Fauque G, Dervartanian DV, Legall J, Peck, H. D. J, Moura JJ, Huynh BH.  1990.  The iron-sulfur centers of the soluble [NiFeSe] hydrogenase, from Desulfovibrio baculatus (DSM 1743). EPR and Mossbauer characterization, Apr 30. Eur J Biochem. 189:381-6., Number 2 AbstractWebsite

The soluble (cytoplasmic plus periplasmic) Ni/Fe-S/Se-containing hydrogenase from Desulfovibrio baculatus (DSM 1743) was purified from cells grown in an 57Fe-enriched medium, and its iron-sulfur centers were extensively characterized by Mossbauer and EPR spectroscopies. The data analysis excludes the presence of a [3Fe-4S] center, either in the native (as isolated) or in the hydrogen-reduced states. In the native state, the non-heme iron atoms are arranged as two diamagnetic [4Fe-4S]2+ centers. Upon reduction, these two centers exhibit distinct and unusual Mossbauer spectroscopic parameters. The centers were found to have similar mid-point potentials (approximately -315 mV) as determined by oxidation-reduction titratins followed by EPR.

Saraiva, LM, Liu MY, Payne WJ, Legall J, Moura JJ, Moura I.  1990.  Spin-equilibrium and heme-ligand alteration in a high-potential monoheme cytochrome (cytochrome c554) from Achromobacter cycloclastes, a denitrifying organism, Apr 30. Eur J Biochem. 189:333-41., Number 2 AbstractWebsite

A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.

FIGUEIREDO, P, Pina F, Vilasboas L, Macanita AL.  1990.  FLUORESCENCE-SPECTRA AND DECAYS OF MALVIDIN 3,5-DIGLUCOSIDE IN AQUEOUS-SOLUTIONS. Journal of Photochemistry and Photobiology a-Chemistry. 52:411-424., Number 3 AbstractWebsite
n/a
Simões Gonçalves, MLS, Lopes da Conceição AC, Moura JJG.  1990.  Metal ion binding of copper(II), zinc(II) and lead(II) to cytochrome C. Electrochimica Acta. 35:473-478., Number 2 AbstractWebsite
n/a
Pina, F, Sotomayor J, Moggi L.  1990.  PHOTOCHEMISTRY OF THE CO(SEP)3+-I- SYSTEM - EVALUATION OF THE QUANTUM YIELD FOR THE PHOTOCHEMICAL REDOX REACTION OF THE ION-PAIR. Journal of Photochemistry and Photobiology a-Chemistry. 53:411-422., Number 3 AbstractWebsite
n/a
loading