Amaro, P, Szabo CI, Schlesser S, Gumberidze A, Kessler EG, Henins A, Le Bigot EO, Trassinelli M, Isac JM, Travers P, Guerra M, Santos JP, Indelicato P.
2014.
A vacuum double-crystal spectrometer for reference-free X-ray spectroscopy of highly charged ions, Jun 01. Radiation Physics and Chemistry. 98:132-149., Number C: Elsevier
AbstractRadiation Physics and Chemistry, 98 + (2014) 132-149. doi:10.1016/j.radphyschem.2014.01.015
Fratini, F, Safari L, Hayrapetyan AG, Jankala K, Amaro P, Santos JP.
2014.
Quantized form factor shift in the presence of free electron laser radiation, Jul 01. EPL (Europhysics Letters). 107:13002., Number 1: IOP Publishing
AbstractIn electron scattering, the target form factors contribute significantly to the diffraction pattern and carry information on the target electromagnetic charge distribution. Here we show that the presence of electromagnetic radiation, as intense as currently available in free electron lasers, shifts the dependence of the target form factors by a quantity that depends on the number of photons absorbed or emitted by the electron as well as on the parameters of the electromagnetic radiation. As example, we show the impact of intense ultraviolet and soft X-ray radiation on elastic electron scattering by the Ne-like argon ion and by the xenon atom. We find that the shift brought by the radiation to the form factor is of the order of some percent. Our results may open up a new avenue to explore matter with the assistance of laser.
F. S. Silva, T, M. D. R. S. Martins L, Guedes da Silva FMC, Kuznetsov ML, Fernandes AR, Silva A, Pan C-J, Lee J-F, Hwang B-J, J. L. Pombeiro A.
2014.
Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: X-ray Absorption Spectroscopy Studies and Biological Applications, 2014/04/01. Chemistry – An Asian Journal. 9(4):1132-1143.: WILEY-VCH Verlag
Abstractn/a
Dhadge, VL, Hussain A, Azevedo AM, Aires-Barros MR, Roque ACA.
2014.
Boronic acid-modified magnetic materials for antibody purification. J. R. Soc. Interface. 11(91):20130875.
AbstractAminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions.
Silva, TF, Martins LM, Guedes da Silva MF, Kuznetsov ML, Fernandes AR, Silva A, Pan CJ, Lee JF, Hwang BJ, Pombeiro AJ.
2014.
Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications. Chem Asian J. 9(4):1132-43.
Madariaga, D, Martínez-Sáez N, Somovilla VJ, Coelho H, González JV, Castro-López J, Asensio JL, Jimenez-Barbero J, Busto JH, Avenoza A, Marcelo F, Hurtado-Guerrero R, Corzana F, Peregrina JM.
2014.
Detection of Tumor-Associated Glycopeptides by Lectins: the Peptide Context Modulates Carbohydrate Recognition. ACS Chem. Biol.. 10:747-56.
AbstractTn antigen (α-O-GalNAc-Ser/Thr) is a convenient cancer biomarker that is recognized by antibodies and lectins. This work yields remarkable results for two plant lectins in terms of epitope recognition and reveals that these receptors show higher affinity for Tn antigen when it is incorporated in the Pro-Asp-Thr-Arg (PDTR) peptide region of mucin MUC1. In contrast, a significant affinity loss is observed when Tn antigen is located in the Ala-His-Gly-Val-Thr-Ser-Ala (AHGVTSA) or Ala-Pro-Gly-Ser-Thr-Ala-Pro (APGSTAP) fragments. Our data indicate that the charged residues, Arg and Asp, present in the PDTR sequence establish noteworthy fundamental interactions with the lectin surface as well as fix the conformation of the peptide backbone, favoring the presentation of the sugar moiety toward the lectin. These results may help to better understand glycopeptide-lectin interactions and may contribute to engineer new binding sites, allowing novel glycosensors for Tn antigen detection to be designed
Ferreira, JL, Gomes S, Henriques C, Borges JP, Silva JC.
2014.
Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and In Vitro evaluation. Journal of Applied Polymer Science. 131(22):41068.
AbstractThe electrospinning of polycaprolactone (PCL) dissolved in glacial acetic acid and the characterization of the resultant nonwoven fiber mats is reported in this work. For comparison purposes, PCL fiber mats were also obtained by electrospinning the polymer dissolved in chloroform. Given the processing parameters chosen, results show that 14 and 17 wt % PCL solutions are not viscous enough and yield beaded fibers, 20 and 23 wt % solutions give rise to high quality fibers and 26 wt % solutions yield mostly irregular and fused fibers. The nonwoven mats are highly porous, retain the high tensile strain of PCL, and the fibers are semicrystalline. Cells adhere and proliferate equally well on all mats, irrespective of the solvent used in their production. In conclusion, mats obtained by electrospinning PCL dissolved in acetic acid are also a good option to consider when producing scaffolds for tissue engineering. Moreover, acetic acid is miscible with polar solvents, which may allow easier blending of PCL with hydrophilic polymers and therefore achieve the production of electrospun nanofibers with improved properties.